Question
Find the roots
x1=23−27,x2=23+27
Alternative Form
x1≈−1.145751,x2≈4.145751
Evaluate
4x2−12x−19
To find the roots of the expression,set the expression equal to 0
4x2−12x−19=0
Substitute a=4,b=−12 and c=−19 into the quadratic formula x=2a−b±b2−4ac
x=2×412±(−12)2−4×4(−19)
Simplify the expression
x=812±(−12)2−4×4(−19)
Simplify the expression
More Steps

Evaluate
(−12)2−4×4(−19)
Multiply
More Steps

Multiply the terms
4×4(−19)
Rewrite the expression
−4×4×19
Multiply the terms
−304
(−12)2−(−304)
Rewrite the expression
122−(−304)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+304
Evaluate the power
144+304
Add the numbers
448
x=812±448
Simplify the radical expression
More Steps

Evaluate
448
Write the expression as a product where the root of one of the factors can be evaluated
64×7
Write the number in exponential form with the base of 8
82×7
The root of a product is equal to the product of the roots of each factor
82×7
Reduce the index of the radical and exponent with 2
87
x=812±87
Separate the equation into 2 possible cases
x=812+87x=812−87
Simplify the expression
More Steps

Evaluate
x=812+87
Divide the terms
More Steps

Evaluate
812+87
Rewrite the expression
84(3+27)
Cancel out the common factor 4
23+27
x=23+27
x=23+27x=812−87
Simplify the expression
More Steps

Evaluate
x=812−87
Divide the terms
More Steps

Evaluate
812−87
Rewrite the expression
84(3−27)
Cancel out the common factor 4
23−27
x=23−27
x=23+27x=23−27
Solution
x1=23−27,x2=23+27
Alternative Form
x1≈−1.145751,x2≈4.145751
Show Solution
