Question
Find the roots
x1=−85−8103i,x2=−85+8103i
Alternative Form
x1≈−0.625−1.268611i,x2≈−0.625+1.268611i
Evaluate
4x2+5x+8
To find the roots of the expression,set the expression equal to 0
4x2+5x+8=0
Substitute a=4,b=5 and c=8 into the quadratic formula x=2a−b±b2−4ac
x=2×4−5±52−4×4×8
Simplify the expression
x=8−5±52−4×4×8
Simplify the expression
More Steps

Evaluate
52−4×4×8
Multiply the terms
More Steps

Multiply the terms
4×4×8
Multiply the terms
16×8
Multiply the numbers
128
52−128
Evaluate the power
25−128
Subtract the numbers
−103
x=8−5±−103
Simplify the radical expression
More Steps

Evaluate
−103
Evaluate the power
103×−1
Evaluate the power
103×i
x=8−5±103×i
Separate the equation into 2 possible cases
x=8−5+103×ix=8−5−103×i
Simplify the expression
More Steps

Evaluate
x=8−5+103×i
Divide the terms
More Steps

Evaluate
8−5+103×i
Use b−a=−ba=−ba to rewrite the fraction
−85−103×i
Simplify
−85+8103i
x=−85+8103i
x=−85+8103ix=8−5−103×i
Simplify the expression
More Steps

Evaluate
x=8−5−103×i
Divide the terms
More Steps

Evaluate
8−5−103×i
Use b−a=−ba=−ba to rewrite the fraction
−85+103×i
Simplify
−85−8103i
x=−85−8103i
x=−85+8103ix=−85−8103i
Solution
x1=−85−8103i,x2=−85+8103i
Alternative Form
x1≈−0.625−1.268611i,x2≈−0.625+1.268611i
Show Solution
