Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=24−3,x2=24+3
Alternative Form
x1≈1.133975,x2≈2.866025
Evaluate
4x2=16x−13
Move the expression to the left side
4x2−16x+13=0
Substitute a=4,b=−16 and c=13 into the quadratic formula x=2a−b±b2−4ac
x=2×416±(−16)2−4×4×13
Simplify the expression
x=816±(−16)2−4×4×13
Simplify the expression
More Steps

Evaluate
(−16)2−4×4×13
Multiply the terms
More Steps

Multiply the terms
4×4×13
Multiply the terms
16×13
Multiply the numbers
208
(−16)2−208
Rewrite the expression
162−208
Evaluate the power
256−208
Subtract the numbers
48
x=816±48
Simplify the radical expression
More Steps

Evaluate
48
Write the expression as a product where the root of one of the factors can be evaluated
16×3
Write the number in exponential form with the base of 4
42×3
The root of a product is equal to the product of the roots of each factor
42×3
Reduce the index of the radical and exponent with 2
43
x=816±43
Separate the equation into 2 possible cases
x=816+43x=816−43
Simplify the expression
More Steps

Evaluate
x=816+43
Divide the terms
More Steps

Evaluate
816+43
Rewrite the expression
84(4+3)
Cancel out the common factor 4
24+3
x=24+3
x=24+3x=816−43
Simplify the expression
More Steps

Evaluate
x=816−43
Divide the terms
More Steps

Evaluate
816−43
Rewrite the expression
84(4−3)
Cancel out the common factor 4
24−3
x=24−3
x=24+3x=24−3
Solution
x1=24−3,x2=24+3
Alternative Form
x1≈1.133975,x2≈2.866025
Show Solution
