Question
Find the roots
x1=23−26,x2=23+26
Alternative Form
x1≈−0.94949,x2≈3.94949
Evaluate
4x2−12x−15
To find the roots of the expression,set the expression equal to 0
4x2−12x−15=0
Substitute a=4,b=−12 and c=−15 into the quadratic formula x=2a−b±b2−4ac
x=2×412±(−12)2−4×4(−15)
Simplify the expression
x=812±(−12)2−4×4(−15)
Simplify the expression
More Steps

Evaluate
(−12)2−4×4(−15)
Multiply
More Steps

Multiply the terms
4×4(−15)
Rewrite the expression
−4×4×15
Multiply the terms
−240
(−12)2−(−240)
Rewrite the expression
122−(−240)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
122+240
Evaluate the power
144+240
Add the numbers
384
x=812±384
Simplify the radical expression
More Steps

Evaluate
384
Write the expression as a product where the root of one of the factors can be evaluated
64×6
Write the number in exponential form with the base of 8
82×6
The root of a product is equal to the product of the roots of each factor
82×6
Reduce the index of the radical and exponent with 2
86
x=812±86
Separate the equation into 2 possible cases
x=812+86x=812−86
Simplify the expression
More Steps

Evaluate
x=812+86
Divide the terms
More Steps

Evaluate
812+86
Rewrite the expression
84(3+26)
Cancel out the common factor 4
23+26
x=23+26
x=23+26x=812−86
Simplify the expression
More Steps

Evaluate
x=812−86
Divide the terms
More Steps

Evaluate
812−86
Rewrite the expression
84(3−26)
Cancel out the common factor 4
23−26
x=23−26
x=23+26x=23−26
Solution
x1=23−26,x2=23+26
Alternative Form
x1≈−0.94949,x2≈3.94949
Show Solution
