Question
Find the roots
x1=25−210,x2=25+210
Alternative Form
x1≈−0.662278,x2≈5.662278
Evaluate
4x2−20x−15
To find the roots of the expression,set the expression equal to 0
4x2−20x−15=0
Substitute a=4,b=−20 and c=−15 into the quadratic formula x=2a−b±b2−4ac
x=2×420±(−20)2−4×4(−15)
Simplify the expression
x=820±(−20)2−4×4(−15)
Simplify the expression
More Steps

Evaluate
(−20)2−4×4(−15)
Multiply
More Steps

Multiply the terms
4×4(−15)
Rewrite the expression
−4×4×15
Multiply the terms
−240
(−20)2−(−240)
Rewrite the expression
202−(−240)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
202+240
Evaluate the power
400+240
Add the numbers
640
x=820±640
Simplify the radical expression
More Steps

Evaluate
640
Write the expression as a product where the root of one of the factors can be evaluated
64×10
Write the number in exponential form with the base of 8
82×10
The root of a product is equal to the product of the roots of each factor
82×10
Reduce the index of the radical and exponent with 2
810
x=820±810
Separate the equation into 2 possible cases
x=820+810x=820−810
Simplify the expression
More Steps

Evaluate
x=820+810
Divide the terms
More Steps

Evaluate
820+810
Rewrite the expression
84(5+210)
Cancel out the common factor 4
25+210
x=25+210
x=25+210x=820−810
Simplify the expression
More Steps

Evaluate
x=820−810
Divide the terms
More Steps

Evaluate
820−810
Rewrite the expression
84(5−210)
Cancel out the common factor 4
25−210
x=25−210
x=25+210x=25−210
Solution
x1=25−210,x2=25+210
Alternative Form
x1≈−0.662278,x2≈5.662278
Show Solution
