Question
Factor the expression
4(x2−x−1)
Evaluate
4x2−4x−4
Solution
4(x2−x−1)
Show Solution

Find the roots
x1=21−5,x2=21+5
Alternative Form
x1≈−0.618034,x2≈1.618034
Evaluate
4x2−4x−4
To find the roots of the expression,set the expression equal to 0
4x2−4x−4=0
Substitute a=4,b=−4 and c=−4 into the quadratic formula x=2a−b±b2−4ac
x=2×44±(−4)2−4×4(−4)
Simplify the expression
x=84±(−4)2−4×4(−4)
Simplify the expression
More Steps

Evaluate
(−4)2−4×4(−4)
Multiply
More Steps

Multiply the terms
4×4(−4)
Rewrite the expression
−4×4×4
Multiply the terms with the same base by adding their exponents
−41+1+1
Add the numbers
−43
(−4)2−(−43)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−4)2+43
Simplify
42+43
Evaluate the power
16+43
Evaluate the power
16+64
Add the numbers
80
x=84±80
Simplify the radical expression
More Steps

Evaluate
80
Write the expression as a product where the root of one of the factors can be evaluated
16×5
Write the number in exponential form with the base of 4
42×5
The root of a product is equal to the product of the roots of each factor
42×5
Reduce the index of the radical and exponent with 2
45
x=84±45
Separate the equation into 2 possible cases
x=84+45x=84−45
Simplify the expression
More Steps

Evaluate
x=84+45
Divide the terms
More Steps

Evaluate
84+45
Rewrite the expression
84(1+5)
Cancel out the common factor 4
21+5
x=21+5
x=21+5x=84−45
Simplify the expression
More Steps

Evaluate
x=84−45
Divide the terms
More Steps

Evaluate
84−45
Rewrite the expression
84(1−5)
Cancel out the common factor 4
21−5
x=21−5
x=21+5x=21−5
Solution
x1=21−5,x2=21+5
Alternative Form
x1≈−0.618034,x2≈1.618034
Show Solution
