Question
Solve the inequality
x∈(−∞,−1.504694)∪(1.447341,+∞)
Evaluate
4x4>19−x
Move the expression to the left side
4x4−(19−x)>0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4x4−19+x>0
Rewrite the expression
4x4−19+x=0
Find the critical values by solving the corresponding equation
x≈1.447341x≈−1.504694
Determine the test intervals using the critical values
x<−1.504694−1.504694<x<1.447341x>1.447341
Choose a value form each interval
x1=−3x2=0x3=2
To determine if x<−1.504694 is the solution to the inequality,test if the chosen value x=−3 satisfies the initial inequality
More Steps

Evaluate
4(−3)4>19−(−3)
Multiply the terms
More Steps

Evaluate
4(−3)4
Evaluate the power
4×81
Multiply the numbers
324
324>19−(−3)
Subtract the terms
More Steps

Evaluate
19−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
19+3
Add the numbers
22
324>22
Check the inequality
true
x<−1.504694 is the solutionx2=0x3=2
To determine if −1.504694<x<1.447341 is the solution to the inequality,test if the chosen value x=0 satisfies the initial inequality
More Steps

Evaluate
4×04>19−0
Simplify
More Steps

Evaluate
4×04
Calculate
4×0
Any expression multiplied by 0 equals 0
0
0>19−0
Removing 0 doesn't change the value,so remove it from the expression
0>19
Check the inequality
false
x<−1.504694 is the solution−1.504694<x<1.447341 is not a solutionx3=2
To determine if x>1.447341 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
4×24>19−2
Multiply the terms
More Steps

Evaluate
4×24
Rewrite the expression
22×24
Rewrite the expression
22+4
Calculate
26
26>19−2
Subtract the numbers
26>17
Calculate
64>17
Check the inequality
true
x<−1.504694 is the solution−1.504694<x<1.447341 is not a solutionx>1.447341 is the solution
Solution
x∈(−∞,−1.504694)∪(1.447341,+∞)
Show Solution
