Question
Solve the equation
x1=49−87,x2=0,x3=49+87
Alternative Form
x1≈−0.081845,x2=0,x3≈4.581845
Evaluate
4x5(2x−9)=3x4
Expand the expression
More Steps

Evaluate
4x5(2x−9)
Apply the distributive property
4x5×2x−4x5×9
Multiply the terms
More Steps

Evaluate
4x5×2x
Multiply the numbers
8x5×x
Multiply the terms
8x6
8x6−4x5×9
Multiply the numbers
8x6−36x5
8x6−36x5=3x4
Move the expression to the left side
8x6−36x5−3x4=0
Factor the expression
x4(8x2−36x−3)=0
Separate the equation into 2 possible cases
x4=08x2−36x−3=0
The only way a power can be 0 is when the base equals 0
x=08x2−36x−3=0
Solve the equation
More Steps

Evaluate
8x2−36x−3=0
Substitute a=8,b=−36 and c=−3 into the quadratic formula x=2a−b±b2−4ac
x=2×836±(−36)2−4×8(−3)
Simplify the expression
x=1636±(−36)2−4×8(−3)
Simplify the expression
More Steps

Evaluate
(−36)2−4×8(−3)
Multiply
(−36)2−(−96)
Rewrite the expression
362−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
362+96
Evaluate the power
1296+96
Add the numbers
1392
x=1636±1392
Simplify the radical expression
More Steps

Evaluate
1392
Write the expression as a product where the root of one of the factors can be evaluated
16×87
Write the number in exponential form with the base of 4
42×87
The root of a product is equal to the product of the roots of each factor
42×87
Reduce the index of the radical and exponent with 2
487
x=1636±487
Separate the equation into 2 possible cases
x=1636+487x=1636−487
Simplify the expression
x=49+87x=1636−487
Simplify the expression
x=49+87x=49−87
x=0x=49+87x=49−87
Solution
x1=49−87,x2=0,x3=49+87
Alternative Form
x1≈−0.081845,x2=0,x3≈4.581845
Show Solution
