Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
4x−102x×77x−25=180
Multiply
More Steps

Evaluate
−102x×77x
Multiply the terms
−7854x×x
Multiply the terms
−7854x2
4x−7854x2−25=180
Move the expression to the left side
4x−7854x2−205=0
Rewrite in standard form
−7854x2+4x−205=0
Multiply both sides
7854x2−4x+205=0
Substitute a=7854,b=−4 and c=205 into the quadratic formula x=2a−b±b2−4ac
x=2×78544±(−4)2−4×7854×205
Simplify the expression
x=157084±(−4)2−4×7854×205
Simplify the expression
More Steps

Evaluate
(−4)2−4×7854×205
Multiply the terms
More Steps

Multiply the terms
4×7854×205
Multiply the terms
31416×205
Multiply the numbers
6440280
(−4)2−6440280
Rewrite the expression
42−6440280
Evaluate the power
16−6440280
Subtract the numbers
−6440264
x=157084±−6440264
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=39271−78541610066i,x2=39271+78541610066i
Alternative Form
x1≈0.000255−0.161559i,x2≈0.000255+0.161559i
Evaluate
4x−102x×77x−25=180
Multiply
More Steps

Evaluate
−102x×77x
Multiply the terms
−7854x×x
Multiply the terms
−7854x2
4x−7854x2−25=180
Move the expression to the left side
4x−7854x2−205=0
Rewrite in standard form
−7854x2+4x−205=0
Multiply both sides
7854x2−4x+205=0
Substitute a=7854,b=−4 and c=205 into the quadratic formula x=2a−b±b2−4ac
x=2×78544±(−4)2−4×7854×205
Simplify the expression
x=157084±(−4)2−4×7854×205
Simplify the expression
More Steps

Evaluate
(−4)2−4×7854×205
Multiply the terms
More Steps

Multiply the terms
4×7854×205
Multiply the terms
31416×205
Multiply the numbers
6440280
(−4)2−6440280
Rewrite the expression
42−6440280
Evaluate the power
16−6440280
Subtract the numbers
−6440264
x=157084±−6440264
Simplify the radical expression
More Steps

Evaluate
−6440264
Evaluate the power
6440264×−1
Evaluate the power
6440264×i
Evaluate the power
More Steps

Evaluate
6440264
Write the expression as a product where the root of one of the factors can be evaluated
4×1610066
Write the number in exponential form with the base of 2
22×1610066
The root of a product is equal to the product of the roots of each factor
22×1610066
Reduce the index of the radical and exponent with 2
21610066
21610066×i
x=157084±21610066×i
Separate the equation into 2 possible cases
x=157084+21610066×ix=157084−21610066×i
Simplify the expression
More Steps

Evaluate
x=157084+21610066×i
Divide the terms
More Steps

Evaluate
157084+21610066×i
Rewrite the expression
157082(2+1610066×i)
Cancel out the common factor 2
78542+1610066×i
Simplify
39271+78541610066i
x=39271+78541610066i
x=39271+78541610066ix=157084−21610066×i
Simplify the expression
More Steps

Evaluate
x=157084−21610066×i
Divide the terms
More Steps

Evaluate
157084−21610066×i
Rewrite the expression
157082(2−1610066×i)
Cancel out the common factor 2
78542−1610066×i
Simplify
39271−78541610066i
x=39271−78541610066i
x=39271+78541610066ix=39271−78541610066i
Solution
x1=39271−78541610066i,x2=39271+78541610066i
Alternative Form
x1≈0.000255−0.161559i,x2≈0.000255+0.161559i
Show Solution
