Question
Solve the equation
Solve for x
Solve for y
Solve for z
x=43+2y+3z4
Evaluate
4x−2y−3z4=3
Move the expression to the right-hand side and change its sign
4x=3+2y+3z4
Divide both sides
44x=43+2y+3z4
Solution
x=43+2y+3z4
Show Solution

Find the partial derivative
Find ∂x∂z by differentiating the equation directly
Find ∂y∂z by differentiating the equation directly
∂x∂z=3z31
Evaluate
4x−2y−3z4=3
Find ∂x∂z by taking the derivative of both sides with respect to x
∂x∂(4x−2y−3z4)=∂x∂(3)
Use differentiation rule ∂x∂(f(x)±g(x))=∂x∂(f(x))±∂x∂(g(x))
∂x∂(4x)−∂x∂(2y)−∂x∂(3z4)=∂x∂(3)
Evaluate
More Steps

Evaluate
∂x∂(4x)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
4×∂x∂(x)
Use ∂x∂xn=nxn−1 to find derivative
4×1
Multiply the terms
4
4−∂x∂(2y)−∂x∂(3z4)=∂x∂(3)
Use ∂x∂(c)=0 to find derivative
4−0−∂x∂(3z4)=∂x∂(3)
Evaluate
More Steps

Evaluate
∂x∂(3z4)
Use differentiation rule ∂x∂(cf(x))=c×∂x∂(f(x))
3×∂x∂(z4)
Use the chain rule ∂x∂(f(g))=∂g∂(f(g))×∂x∂(g) where the g=z, to find the derivative
3×∂z∂(z4)∂x∂z
Find the derivative
3×4z3∂x∂z
Multiply the terms
12z3∂x∂z
4−0−12z3∂x∂z=∂x∂(3)
Removing 0 doesn't change the value,so remove it from the expression
4−12z3∂x∂z=∂x∂(3)
Find the partial derivative
4−12z3∂x∂z=0
Move the constant to the right-hand side and change its sign
−12z3∂x∂z=0−4
Removing 0 doesn't change the value,so remove it from the expression
−12z3∂x∂z=−4
Divide both sides
−12z3−12z3∂x∂z=−12z3−4
Divide the numbers
∂x∂z=−12z3−4
Solution
∂x∂z=3z31
Show Solution
