Question
Simplify the expression
4x−20x5
Evaluate
4x−4−x5×5
Calculate the absolute value
4x−4x5×5
Solution
4x−20x5
Show Solution

Factor the expression
4(x−5x5)
Evaluate
4x−4−x5×5
Calculate the absolute value
4x−4x5×5
Multiply the terms
4x−20x5
Solution
4(x−5x5)
Show Solution

Find the roots
x1=0,x2=54125
Alternative Form
x1=0,x2≈0.66874
Evaluate
4x−4−x5×5
To find the roots of the expression,set the expression equal to 0
4x−4−x5×5=0
Calculate the absolute value
4x−4x5×5=0
Multiply the terms
4x−20x5=0
Separate the equation into 2 possible cases
4x−20x5=0,x5≥04x−20(−x5)=0,x5<0
Solve the equation
More Steps

Evaluate
4x−20x5=0
Factor the expression
4x(1−5x4)=0
Divide both sides
x(1−5x4)=0
Separate the equation into 2 possible cases
x=01−5x4=0
Solve the equation
More Steps

Evaluate
1−5x4=0
Move the constant to the right-hand side and change its sign
−5x4=0−1
Removing 0 doesn't change the value,so remove it from the expression
−5x4=−1
Change the signs on both sides of the equation
5x4=1
Divide both sides
55x4=51
Divide the numbers
x4=51
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±451
Simplify the expression
x=±54125
Separate the equation into 2 possible cases
x=54125x=−54125
x=0x=54125x=−54125
x=0x=54125x=−54125,x5≥04x−20(−x5)=0,x5<0
The only way a base raised to an odd power can be greater than or equal to 0 is if the base is greater than or equal to 0
x=0x=54125x=−54125,x≥04x−20(−x5)=0,x5<0
Solve the equation
More Steps

Evaluate
4x−20(−x5)=0
Calculate
4x+20x5=0
Factor the expression
4x(1+5x4)=0
Divide both sides
x(1+5x4)=0
Separate the equation into 2 possible cases
x=01+5x4=0
Solve the equation
More Steps

Evaluate
1+5x4=0
Move the constant to the right-hand side and change its sign
5x4=0−1
Removing 0 doesn't change the value,so remove it from the expression
5x4=−1
Divide both sides
55x4=5−1
Divide the numbers
x4=5−1
Use b−a=−ba=−ba to rewrite the fraction
x4=−51
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−51
Simplify the expression
x=±(104500−104500i)
Separate the equation into 2 possible cases
x=104500−104500ix=−104500+104500i
x=0x=104500−104500ix=−104500+104500i
x=0x=54125x=−54125,x≥0x=0x=104500−104500ix=−104500+104500i,x5<0
The only way a base raised to an odd power can be less than 0 is if the base is less than 0
x=0x=54125x=−54125,x≥0x=0x=104500−104500ix=−104500+104500i,x<0
Find the intersection
x=0x=54125x=0x=104500−104500ix=−104500+104500i,x<0
Find the intersection
x=0x=54125x∈∅
Find the union
x=0x=54125
Solution
x1=0,x2=54125
Alternative Form
x1=0,x2≈0.66874
Show Solution
