Question
Solve the equation
x=4−32yy3
Evaluate
4x−y3=32xy
Rewrite the expression
4x−y3=32yx
Move the variable to the left side
4x−y3−32yx=0
Collect like terms by calculating the sum or difference of their coefficients
(4−32y)x−y3=0
Move the constant to the right side
(4−32y)x=0+y3
Removing 0 doesn't change the value,so remove it from the expression
(4−32y)x=y3
Divide both sides
4−32y(4−32y)x=4−32yy3
Solution
x=4−32yy3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
4x−y3=32xy
To test if the graph of 4x−y3=32xy is symmetry with respect to the origin,substitute -x for x and -y for y
4(−x)−(−y)3=32(−x)(−y)
Evaluate
More Steps

Evaluate
4(−x)−(−y)3
Multiply the numbers
−4x−(−y)3
Rewrite the expression
−4x+y3
−4x+y3=32(−x)(−y)
Evaluate
−4x+y3=32xy
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=−sin3(θ)8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)r=sin3(θ)−8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)
Evaluate
4x−y3=32xy
Move the expression to the left side
4x−y3−32xy=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
4cos(θ)×r−(sin(θ)×r)3−32cos(θ)×rsin(θ)×r=0
Factor the expression
−sin3(θ)×r3−32cos(θ)sin(θ)×r2+4cos(θ)×r=0
Simplify the expression
−sin3(θ)×r3−16sin(2θ)×r2+4cos(θ)×r=0
Factor the expression
r(−sin3(θ)×r2−16sin(2θ)×r+4cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0−sin3(θ)×r2−16sin(2θ)×r+4cos(θ)=0
Solution
More Steps

Factor the expression
−sin3(θ)×r2−16sin(2θ)×r+4cos(θ)=0
Solve using the quadratic formula
r=−2sin3(θ)16sin(2θ)±(−16sin(2θ))2−4(−sin3(θ))×4cos(θ)
Simplify
r=−2sin3(θ)16sin(2θ)±256sin2(2θ)+16cos(θ)sin3(θ)
Separate the equation into 2 possible cases
r=−2sin3(θ)16sin(2θ)+256sin2(2θ)+16cos(θ)sin3(θ)r=−2sin3(θ)16sin(2θ)−256sin2(2θ)+16cos(θ)sin3(θ)
Evaluate
More Steps

Evaluate
−2sin3(θ)16sin(2θ)+256sin2(2θ)+16cos(θ)sin3(θ)
Simplify the root
−2sin3(θ)16sin(2θ)+416sin2(2θ)+sin3(θ)cos(θ)
Use b−a=−ba=−ba to rewrite the fraction
−2sin3(θ)16sin(2θ)+416sin2(2θ)+sin3(θ)cos(θ)
Factor
−2sin3(θ)2(8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ))
Reduce the fraction
−sin3(θ)8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)
r=−sin3(θ)8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)r=−2sin3(θ)16sin(2θ)−256sin2(2θ)+16cos(θ)sin3(θ)
Evaluate
More Steps

Evaluate
−2sin3(θ)16sin(2θ)−256sin2(2θ)+16cos(θ)sin3(θ)
Simplify the root
−2sin3(θ)16sin(2θ)−416sin2(2θ)+sin3(θ)cos(θ)
Use b−a=−ba=−ba to rewrite the fraction
−2sin3(θ)16sin(2θ)−416sin2(2θ)+sin3(θ)cos(θ)
Factor
−2sin3(θ)2(8sin(2θ)−216sin2(2θ)+sin3(θ)cos(θ))
Reduce the fraction
−sin3(θ)8sin(2θ)−216sin2(2θ)+sin3(θ)cos(θ)
Rewrite the expression
sin3(θ)−8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)
r=−sin3(θ)8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)r=sin3(θ)−8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)
r=0r=−sin3(θ)8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)r=sin3(θ)−8sin(2θ)+216sin2(2θ)+sin3(θ)cos(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=3y2+32x−32y+4
Calculate
4x−y3=32xy
Take the derivative of both sides
dxd(4x−y3)=dxd(32xy)
Calculate the derivative
More Steps

Evaluate
dxd(4x−y3)
Use differentiation rules
dxd(4x)+dxd(−y3)
Evaluate the derivative
More Steps

Evaluate
dxd(4x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
4×dxd(x)
Use dxdxn=nxn−1 to find derivative
4×1
Any expression multiplied by 1 remains the same
4
4+dxd(−y3)
Evaluate the derivative
More Steps

Evaluate
dxd(−y3)
Use differentiation rules
dyd(−y3)×dxdy
Evaluate the derivative
−3y2dxdy
4−3y2dxdy
4−3y2dxdy=dxd(32xy)
Calculate the derivative
More Steps

Evaluate
dxd(32xy)
Use differentiation rules
dxd(32x)×y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(32x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
32×dxd(x)
Use dxdxn=nxn−1 to find derivative
32×1
Any expression multiplied by 1 remains the same
32
32y+32x×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
32y+32xdxdy
4−3y2dxdy=32y+32xdxdy
Move the expression to the left side
4−3y2dxdy−32xdxdy=32y
Move the expression to the right side
−3y2dxdy−32xdxdy=32y−4
Collect like terms by calculating the sum or difference of their coefficients
(−3y2−32x)dxdy=32y−4
Divide both sides
−3y2−32x(−3y2−32x)dxdy=−3y2−32x32y−4
Divide the numbers
dxdy=−3y2−32x32y−4
Solution
More Steps

Evaluate
−3y2−32x32y−4
Use b−a=−ba=−ba to rewrite the fraction
−3y2+32x32y−4
Rewrite the expression
3y2+32x−32y+4
dxdy=3y2+32x−32y+4
Show Solution
