Question
Solve the equation
z1=−7e667228e3,z2=0,z3=7e667228e3
Alternative Form
z1≈−0.552518,z2=0,z3≈0.552518
Evaluate
4z×1=z×7e3z6
Multiply the terms
4z=z×7e3z6
Multiply
More Steps

Evaluate
z×7e3z6
Multiply the terms with the same base by adding their exponents
z1+6×7e3
Add the numbers
z7×7e3
Use the commutative property to reorder the terms
7z7e3
Multiply the numbers
7e3z7
4z=7e3z7
Add or subtract both sides
4z−7e3z7=0
Factor the expression
z(4−7e3z6)=0
Separate the equation into 2 possible cases
z=04−7e3z6=0
Solve the equation
More Steps

Evaluate
4−7e3z6=0
Move the constant to the right-hand side and change its sign
−7e3z6=0−4
Removing 0 doesn't change the value,so remove it from the expression
−7e3z6=−4
Change the signs on both sides of the equation
7e3z6=4
Divide both sides
7e37e3z6=7e34
Divide the numbers
z6=7e34
Take the root of both sides of the equation and remember to use both positive and negative roots
z=±67e34
Simplify the expression
More Steps

Evaluate
67e34
To take a root of a fraction,take the root of the numerator and denominator separately
67e364
Simplify the radical expression
67e332
Multiply by the Conjugate
67e3×675e332×675e3
Multiply the numbers
67e3×675e3667228e3
Multiply the numbers
7e667228e3
z=±7e667228e3
Separate the equation into 2 possible cases
z=7e667228e3z=−7e667228e3
z=0z=7e667228e3z=−7e667228e3
Solution
z1=−7e667228e3,z2=0,z3=7e667228e3
Alternative Form
z1≈−0.552518,z2=0,z3≈0.552518
Show Solution
