Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=61−61,x2=61+61
Alternative Form
x1≈−1.135042,x2≈1.468375
Evaluate
5−(x−1)(x×1)=x2×2
Remove the parentheses
5−(x−1)x×1=x2×2
Multiply the terms
More Steps

Evaluate
(x−1)x×1
Rewrite the expression
(x−1)x
Multiply the terms
x(x−1)
5−x(x−1)=x2×2
Use the commutative property to reorder the terms
5−x(x−1)=2x2
Expand the expression
More Steps

Evaluate
−x(x−1)
Apply the distributive property
−x×x−(−x×1)
Multiply the terms
−x2−(−x×1)
Any expression multiplied by 1 remains the same
−x2−(−x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x2+x
5−x2+x=2x2
Move the expression to the left side
5−3x2+x=0
Rewrite in standard form
−3x2+x+5=0
Multiply both sides
3x2−x−5=0
Substitute a=3,b=−1 and c=−5 into the quadratic formula x=2a−b±b2−4ac
x=2×31±(−1)2−4×3(−5)
Simplify the expression
x=61±(−1)2−4×3(−5)
Simplify the expression
More Steps

Evaluate
(−1)2−4×3(−5)
Evaluate the power
1−4×3(−5)
Multiply
More Steps

Multiply the terms
4×3(−5)
Rewrite the expression
−4×3×5
Multiply the terms
−60
1−(−60)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+60
Add the numbers
61
x=61±61
Separate the equation into 2 possible cases
x=61+61x=61−61
Solution
x1=61−61,x2=61+61
Alternative Form
x1≈−1.135042,x2≈1.468375
Show Solution
