Question
Simplify the expression
−8112J2a25
Evaluate
5÷(13Jia×1)÷(6Jia×8)÷13
Multiply the terms
More Steps

Multiply the terms
13Jia×1
Rewrite the expression
13Jia
Multiply the numbers
13iJa
5÷13iJa÷(6Jia×8)÷13
Divide the terms
More Steps

Evaluate
5÷13iJa
Rewrite the expression
13iJa5
Calculate
More Steps

Evaluate
13i5
Multiply by the Conjugate
13i×i5i
Calculate
−135i
Use b−a=−ba=−ba to rewrite the fraction
−135i
Reduce the fraction
−135i
Ja−135i
Use b−a=−ba=−ba to rewrite the fraction
−Ja135i
(−Ja135i)÷(6Jia×8)÷13
Multiply
More Steps

Multiply the terms
6Jia×8
Multiply the terms
48Jia
Multiply the numbers
48iJa
(−Ja135i)÷48iJa÷13
Divide the terms
More Steps

Evaluate
(−Ja135i)÷48iJa
Multiply by the reciprocal
−Ja135i×48iJa1
Rewrite the expression
−Jai×135×48iJa1
Rewrite the expression
−Jai×135×i×48Ja1
Cancel out the common factor i
−Ja135×48Ja1
Multiply the terms
−Ja×48Ja135
Multiply the terms
More Steps

Evaluate
Ja×48Ja
Use the commutative property to reorder the terms
48JaJa
Multiply the terms
48J2a×a
Multiply the terms
48J2a2
−48J2a2135
Simplify
−624J2a25
(−624J2a25)÷13
Multiply by the reciprocal
−624J2a25×131
Multiply the terms
−624J2a2×135
Solution
−8112J2a25
Show Solution

Find the excluded values
J=0,a=0
Evaluate
5÷(13Jia×1)÷(6Jia×8)÷13
To find the excluded values,set the denominators equal to 0
Ja=0
Separate the equation into 2 possible cases
J=0a=0
Solution
J=0,a=0
Show Solution
