Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
k1=10125−31735,k2=10125+31735
Alternative Form
k1≈0.004001,k2≈24.995999
Evaluate
5(100−4k)k=2
Multiply the terms
5k(100−4k)=2
Expand the expression
More Steps

Evaluate
5k(100−4k)
Apply the distributive property
5k×100−5k×4k
Multiply the numbers
500k−5k×4k
Multiply the terms
More Steps

Evaluate
5k×4k
Multiply the numbers
20k×k
Multiply the terms
20k2
500k−20k2
500k−20k2=2
Move the expression to the left side
500k−20k2−2=0
Rewrite in standard form
−20k2+500k−2=0
Multiply both sides
20k2−500k+2=0
Substitute a=20,b=−500 and c=2 into the quadratic formula k=2a−b±b2−4ac
k=2×20500±(−500)2−4×20×2
Simplify the expression
k=40500±(−500)2−4×20×2
Simplify the expression
More Steps

Evaluate
(−500)2−4×20×2
Multiply the terms
More Steps

Multiply the terms
4×20×2
Multiply the terms
80×2
Multiply the numbers
160
(−500)2−160
Calculate
5002−160
k=40500±5002−160
Simplify the radical expression
More Steps

Evaluate
5002−160
Add the numbers
249840
Write the expression as a product where the root of one of the factors can be evaluated
144×1735
Write the number in exponential form with the base of 12
122×1735
The root of a product is equal to the product of the roots of each factor
122×1735
Reduce the index of the radical and exponent with 2
121735
k=40500±121735
Separate the equation into 2 possible cases
k=40500+121735k=40500−121735
Simplify the expression
More Steps

Evaluate
k=40500+121735
Divide the terms
More Steps

Evaluate
40500+121735
Rewrite the expression
404(125+31735)
Cancel out the common factor 4
10125+31735
k=10125+31735
k=10125+31735k=40500−121735
Simplify the expression
More Steps

Evaluate
k=40500−121735
Divide the terms
More Steps

Evaluate
40500−121735
Rewrite the expression
404(125−31735)
Cancel out the common factor 4
10125−31735
k=10125−31735
k=10125+31735k=10125−31735
Solution
k1=10125−31735,k2=10125+31735
Alternative Form
k1≈0.004001,k2≈24.995999
Show Solution
