Question
Simplify the expression
200v7−500v6
Evaluate
5(2v−5)×5×4v6
Multiply the terms
More Steps

Evaluate
5×5×4
Multiply the terms
25×4
Multiply the numbers
100
100(2v−5)v6
Multiply the terms
100v6(2v−5)
Apply the distributive property
100v6×2v−100v6×5
Multiply the terms
More Steps

Evaluate
100v6×2v
Multiply the numbers
200v6×v
Multiply the terms
More Steps

Evaluate
v6×v
Use the product rule an×am=an+m to simplify the expression
v6+1
Add the numbers
v7
200v7
200v7−100v6×5
Solution
200v7−500v6
Show Solution

Find the roots
v1=0,v2=25
Alternative Form
v1=0,v2=2.5
Evaluate
5(2v−5)×5(4v6)
To find the roots of the expression,set the expression equal to 0
5(2v−5)×5(4v6)=0
Multiply the terms
5(2v−5)×5×4v6=0
Multiply
More Steps

Multiply the terms
5(2v−5)×5×4v6
Multiply the terms
More Steps

Evaluate
5×5×4
Multiply the terms
25×4
Multiply the numbers
100
100(2v−5)v6
Multiply the terms
100v6(2v−5)
100v6(2v−5)=0
Elimination the left coefficient
v6(2v−5)=0
Separate the equation into 2 possible cases
v6=02v−5=0
The only way a power can be 0 is when the base equals 0
v=02v−5=0
Solve the equation
More Steps

Evaluate
2v−5=0
Move the constant to the right-hand side and change its sign
2v=0+5
Removing 0 doesn't change the value,so remove it from the expression
2v=5
Divide both sides
22v=25
Divide the numbers
v=25
v=0v=25
Solution
v1=0,v2=25
Alternative Form
v1=0,v2=2.5
Show Solution
