Question
Solve the equation
x1≈−2.186607,x2≈0.289241,x3≈0.431436,x4≈1.46593
Evaluate
5×2x4=2(3x−1)×2(3x−1)
Multiply the numbers
10x4=2(3x−1)×2(3x−1)
Multiply the terms
More Steps

Evaluate
2(3x−1)×2(3x−1)
Multiply the terms
4(3x−1)(3x−1)
Multiply the terms
4(3x−1)2
10x4=4(3x−1)2
Expand the expression
More Steps

Evaluate
4(3x−1)2
Expand the expression
More Steps

Evaluate
(3x−1)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(3x)2−2×3x×1+12
Calculate
9x2−6x+1
4(9x2−6x+1)
Apply the distributive property
4×9x2−4×6x+4×1
Multiply the numbers
36x2−4×6x+4×1
Multiply the numbers
36x2−24x+4×1
Any expression multiplied by 1 remains the same
36x2−24x+4
10x4=36x2−24x+4
Move the expression to the left side
10x4−(36x2−24x+4)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10x4−36x2+24x−4=0
Factor the expression
2(5x4−18x2+12x−2)=0
Divide both sides
5x4−18x2+12x−2=0
Calculate
x≈1.46593x≈0.431436x≈0.289241x≈−2.186607
Solution
x1≈−2.186607,x2≈0.289241,x3≈0.431436,x4≈1.46593
Show Solution
