Question
5×33×17×32×10x−12
Simplify the expression
206550x−12
Evaluate
5×33×17×32×10x−12
Solution
More Steps

Evaluate
5×33×17×32×10x
Multiply the terms
More Steps

Evaluate
5×17×10
Multiply the terms
85×10
Multiply the numbers
850
850×33×32x
Multiply the terms with the same base by adding their exponents
850×33+2x
Add the numbers
850×35x
Multiply the terms
More Steps

Evaluate
850×35
Evaluate the power
850×243
Multiply the numbers
206550
206550x
206550x−12
Show Solution

Factor the expression
6(34425x−2)
Evaluate
5×33×17×32×10x−12
Multiply
More Steps

Evaluate
5×33×17×32×10x
Multiply the terms
More Steps

Evaluate
5×17×10
Multiply the terms
85×10
Multiply the numbers
850
850×33×32x
Multiply the terms with the same base by adding their exponents
850×33+2x
Add the numbers
850×35x
Multiply the terms
More Steps

Evaluate
850×35
Evaluate the power
850×243
Multiply the numbers
206550
206550x
206550x−12
Solution
6(34425x−2)
Show Solution

Find the roots
x=344252
Alternative Form
x≈5.809731×10−5
Evaluate
5×33×17×32×10x−12
To find the roots of the expression,set the expression equal to 0
5×33×17×32×10x−12=0
Multiply
More Steps

Multiply the terms
5×33×17×32×10x
Multiply the terms
More Steps

Evaluate
5×17×10
Multiply the terms
85×10
Multiply the numbers
850
850×33×32x
Multiply the terms with the same base by adding their exponents
850×33+2x
Add the numbers
850×35x
Multiply the terms
More Steps

Evaluate
850×35
Evaluate the power
850×243
Multiply the numbers
206550
206550x
206550x−12=0
Move the constant to the right-hand side and change its sign
206550x=0+12
Removing 0 doesn't change the value,so remove it from the expression
206550x=12
Divide both sides
206550206550x=20655012
Divide the numbers
x=20655012
Solution
x=344252
Alternative Form
x≈5.809731×10−5
Show Solution
