Question
Simplify the expression
240x2−180x−6
Evaluate
5(4x−3)×12x−6
Multiply
More Steps

Multiply the terms
5(4x−3)×12x
Multiply the terms
60(4x−3)x
Multiply the terms
60x(4x−3)
60x(4x−3)−6
Solution
More Steps

Evaluate
60x(4x−3)
Apply the distributive property
60x×4x−60x×3
Multiply the terms
More Steps

Evaluate
60x×4x
Multiply the numbers
240x×x
Multiply the terms
240x2
240x2−60x×3
Multiply the numbers
240x2−180x
240x2−180x−6
Show Solution

Factor the expression
6(40x2−30x−1)
Evaluate
5(4x−3)×12x−6
Multiply
More Steps

Evaluate
5(4x−3)×12x
Multiply the terms
60(4x−3)x
Multiply the terms
60x(4x−3)
60x(4x−3)−6
Simplify
More Steps

Evaluate
60x(4x−3)
Apply the distributive property
60x×4x+60x(−3)
Multiply the terms
More Steps

Evaluate
60x×4x
Multiply the numbers
240x×x
Multiply the terms
240x2
240x2+60x(−3)
Multiply the terms
More Steps

Evaluate
60(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−60×3
Multiply the numbers
−180
240x2−180x
240x2−180x−6
Solution
6(40x2−30x−1)
Show Solution

Find the roots
x1=4015−265,x2=4015+265
Alternative Form
x1≈−0.031971,x2≈0.781971
Evaluate
5(4x−3)×12x−6
To find the roots of the expression,set the expression equal to 0
5(4x−3)×12x−6=0
Multiply
More Steps

Multiply the terms
5(4x−3)×12x
Multiply the terms
60(4x−3)x
Multiply the terms
60x(4x−3)
60x(4x−3)−6=0
Calculate
More Steps

Evaluate
60x(4x−3)
Apply the distributive property
60x×4x−60x×3
Multiply the terms
More Steps

Evaluate
60x×4x
Multiply the numbers
240x×x
Multiply the terms
240x2
240x2−60x×3
Multiply the numbers
240x2−180x
240x2−180x−6=0
Substitute a=240,b=−180 and c=−6 into the quadratic formula x=2a−b±b2−4ac
x=2×240180±(−180)2−4×240(−6)
Simplify the expression
x=480180±(−180)2−4×240(−6)
Simplify the expression
More Steps

Evaluate
(−180)2−4×240(−6)
Multiply
More Steps

Multiply the terms
4×240(−6)
Rewrite the expression
−4×240×6
Multiply the terms
−5760
(−180)2−(−5760)
Rewrite the expression
1802−(−5760)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1802+5760
Evaluate the power
32400+5760
Add the numbers
38160
x=480180±38160
Simplify the radical expression
More Steps

Evaluate
38160
Write the expression as a product where the root of one of the factors can be evaluated
144×265
Write the number in exponential form with the base of 12
122×265
The root of a product is equal to the product of the roots of each factor
122×265
Reduce the index of the radical and exponent with 2
12265
x=480180±12265
Separate the equation into 2 possible cases
x=480180+12265x=480180−12265
Simplify the expression
More Steps

Evaluate
x=480180+12265
Divide the terms
More Steps

Evaluate
480180+12265
Rewrite the expression
48012(15+265)
Cancel out the common factor 12
4015+265
x=4015+265
x=4015+265x=480180−12265
Simplify the expression
More Steps

Evaluate
x=480180−12265
Divide the terms
More Steps

Evaluate
480180−12265
Rewrite the expression
48012(15−265)
Cancel out the common factor 12
4015−265
x=4015−265
x=4015+265x=4015−265
Solution
x1=4015−265,x2=4015+265
Alternative Form
x1≈−0.031971,x2≈0.781971
Show Solution
