Question  
 Solve the quadratic equation
Solve using the quadratic formula
 Solve by completing the square
 Solve using the PQ formula
 w1=−65+145,w2=6−5+145
Alternative Form
 w1≈−2.840266,w2≈1.173599
Evaluate
5(w−2)=−3w2
Swap the sides
−3w2=5(w−2)
Expand the expression
        More Steps
        
Evaluate
5(w−2)
Apply the distributive property
5w−5×2
Multiply the numbers
5w−10
−3w2=5w−10
Move the expression to the left side
−3w2−5w+10=0
Multiply both sides
3w2+5w−10=0
Substitute a=3,b=5 and c=−10 into the quadratic formula w=2a−b±b2−4ac
w=2×3−5±52−4×3(−10)
Simplify the expression
w=6−5±52−4×3(−10)
Simplify the expression
        More Steps
        
Evaluate
52−4×3(−10)
Multiply
        More Steps
        
Multiply the terms
4×3(−10)
Any expression multiplied by 1 remains the same
−4×3×10
Multiply the terms
−12×10
Multiply the numbers
−120
52−(−120)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
52+120
Evaluate the power
25+120
Add the numbers
145
w=6−5±145
Separate the equation into 2 possible cases
w=6−5+145w=6−5−145
Use b−a=−ba=−ba to rewrite the fraction
w=6−5+145w=−65+145
Solution
w1=−65+145,w2=6−5+145
Alternative Form
w1≈−2.840266,w2≈1.173599
        Show Solution
        