Question
Solve the equation
y=−2
Evaluate
5(y−9)−15=10(2y−3)
Calculate
More Steps

Evaluate
5(y−9)−15
Expand the expression
More Steps

Calculate
5(y−9)
Apply the distributive property
5y−5×9
Multiply the numbers
5y−45
5y−45−15
Subtract the numbers
5y−60
5y−60=10(2y−3)
Calculate
More Steps

Evaluate
10(2y−3)
Apply the distributive property
10×2y−10×3
Multiply the numbers
20y−10×3
Multiply the numbers
20y−30
5y−60=20y−30
Move the expression to the left side
5y−60−(20y−30)=0
Calculate
More Steps

Add the terms
5y−60−(20y−30)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5y−60−20y+30
Subtract the terms
More Steps

Evaluate
5y−20y
Collect like terms by calculating the sum or difference of their coefficients
(5−20)y
Subtract the numbers
−15y
−15y−60+30
Add the numbers
−15y−30
−15y−30=0
Move the constant to the right-hand side and change its sign
−15y=0+30
Removing 0 doesn't change the value,so remove it from the expression
−15y=30
Change the signs on both sides of the equation
15y=−30
Divide both sides
1515y=15−30
Divide the numbers
y=15−30
Solution
More Steps

Evaluate
15−30
Reduce the numbers
1−2
Calculate
−2
y=−2
Show Solution

Rewrite the equation
Rewrite in standard form
Rewrite in slope-intercept form
y=−2
Evaluate
5(y−9)−15=10(2y−3)
Evaluate
More Steps

Evaluate
5(y−9)−15
Expand the expression
More Steps

Calculate
5(y−9)
Apply the distributive property
5y−5×9
Multiply the numbers
5y−45
5y−45−15
Subtract the numbers
5y−60
5y−60=10(2y−3)
Multiply
More Steps

Evaluate
10(2y−3)
Apply the distributive property
10×2y−10×3
Multiply the numbers
20y−10×3
Multiply the numbers
20y−30
5y−60=20y−30
Move the variable to the left side
−15y−60=−30
Move the constant to the right side
−15y=30
Multiply both sides
15y=−30
Solution
y=−2
Show Solution
