Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=60135−10185,x2=60135+10185
Alternative Form
x1≈0.567987,x2≈3.932013
Evaluate
5(4x−2)×3(12−3x)=42
Multiply the terms
15(4x−2)(12−3x)=42
Expand the expression
More Steps

Evaluate
15(4x−2)(12−3x)
Multiply the terms
More Steps

Evaluate
15(4x−2)
Apply the distributive property
15×4x−15×2
Multiply the numbers
60x−15×2
Multiply the numbers
60x−30
(60x−30)(12−3x)
Apply the distributive property
60x×12−60x×3x−30×12−(−30×3x)
Multiply the numbers
720x−60x×3x−30×12−(−30×3x)
Multiply the terms
More Steps

Evaluate
60x×3x
Multiply the numbers
180x×x
Multiply the terms
180x2
720x−180x2−30×12−(−30×3x)
Multiply the numbers
720x−180x2−360−(−30×3x)
Multiply the numbers
720x−180x2−360−(−90x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
720x−180x2−360+90x
Add the terms
More Steps

Evaluate
720x+90x
Collect like terms by calculating the sum or difference of their coefficients
(720+90)x
Add the numbers
810x
810x−180x2−360
810x−180x2−360=42
Move the expression to the left side
810x−180x2−402=0
Rewrite in standard form
−180x2+810x−402=0
Multiply both sides
180x2−810x+402=0
Substitute a=180,b=−810 and c=402 into the quadratic formula x=2a−b±b2−4ac
x=2×180810±(−810)2−4×180×402
Simplify the expression
x=360810±(−810)2−4×180×402
Simplify the expression
More Steps

Evaluate
(−810)2−4×180×402
Multiply the terms
More Steps

Multiply the terms
4×180×402
Multiply the terms
720×402
Multiply the numbers
289440
(−810)2−289440
Calculate
8102−289440
x=360810±8102−289440
Simplify the radical expression
More Steps

Evaluate
8102−289440
Add the numbers
366660
Write the expression as a product where the root of one of the factors can be evaluated
36×10185
Write the number in exponential form with the base of 6
62×10185
The root of a product is equal to the product of the roots of each factor
62×10185
Reduce the index of the radical and exponent with 2
610185
x=360810±610185
Separate the equation into 2 possible cases
x=360810+610185x=360810−610185
Simplify the expression
More Steps

Evaluate
x=360810+610185
Divide the terms
More Steps

Evaluate
360810+610185
Rewrite the expression
3606(135+10185)
Cancel out the common factor 6
60135+10185
x=60135+10185
x=60135+10185x=360810−610185
Simplify the expression
More Steps

Evaluate
x=360810−610185
Divide the terms
More Steps

Evaluate
360810−610185
Rewrite the expression
3606(135−10185)
Cancel out the common factor 6
60135−10185
x=60135−10185
x=60135+10185x=60135−10185
Solution
x1=60135−10185,x2=60135+10185
Alternative Form
x1≈0.567987,x2≈3.932013
Show Solution
