Question
Simplify the expression
−5−30x4
Evaluate
5×2−15x×x2×2x−15
Multiply the numbers
10−15x×x2×2x−15
Multiply
More Steps

Multiply the terms
−15x×x2×2x
Multiply the terms
−30x×x2×x
Multiply the terms with the same base by adding their exponents
−30x1+2+1
Add the numbers
−30x4
10−30x4−15
Solution
−5−30x4
Show Solution

Factor the expression
−5(1+6x4)
Evaluate
5×2−15x×x2×2x−15
Multiply the numbers
10−15x×x2×2x−15
Multiply
More Steps

Multiply the terms
15x×x2×2x
Multiply the terms
30x×x2×x
Multiply the terms with the same base by adding their exponents
30x1+2+1
Add the numbers
30x4
10−30x4−15
Subtract the numbers
−5−30x4
Solution
−5(1+6x4)
Show Solution

Find the roots
x1=−6454+6454i,x2=6454−6454i
Alternative Form
x1≈−0.451801+0.451801i,x2≈0.451801−0.451801i
Evaluate
5×2−15x×x2×2x−15
To find the roots of the expression,set the expression equal to 0
5×2−15x×x2×2x−15=0
Multiply the numbers
10−15x×x2×2x−15=0
Multiply
More Steps

Multiply the terms
15x×x2×2x
Multiply the terms
30x×x2×x
Multiply the terms with the same base by adding their exponents
30x1+2+1
Add the numbers
30x4
10−30x4−15=0
Subtract the numbers
−5−30x4=0
Move the constant to the right-hand side and change its sign
−30x4=0+5
Removing 0 doesn't change the value,so remove it from the expression
−30x4=5
Change the signs on both sides of the equation
30x4=−5
Divide both sides
3030x4=30−5
Divide the numbers
x4=30−5
Divide the numbers
More Steps

Evaluate
30−5
Cancel out the common factor 5
6−1
Use b−a=−ba=−ba to rewrite the fraction
−61
x4=−61
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±4−61
Simplify the expression
More Steps

Evaluate
4−61
To take a root of a fraction,take the root of the numerator and denominator separately
4−641
Simplify the radical expression
4−61
Simplify the radical expression
More Steps

Evaluate
4−6
Rewrite the expression
46×(22+22i)
Apply the distributive property
46×22+46×22i
Multiply the numbers
2424+46×22i
Multiply the numbers
2424+2424i
2424+2424i1
Multiply by the Conjugate
(2424+2424i)(2424−2424i)2424−2424i
Calculate
More Steps

Evaluate
(2424+2424i)(2424−2424i)
Use (a+b)(a−b)=a2−b2 to simplify the product
(2424)2−(2424i)2
Evaluate the power
26−(2424i)2
Evaluate the power
26−(−26)
Calculate
6
62424−2424i
Simplify
26424−26424i
Rearrange the numbers
More Steps

Evaluate
26424
Multiply by the Conjugate
26×6424×6
Multiply the numbers
26×62454
Multiply the numbers
122454
Cancel out the common factor 2
6454
6454−26424i
Rearrange the numbers
More Steps

Evaluate
−26424
Multiply by the Conjugate
26×6−424×6
Multiply the numbers
26×6−2454
Multiply the numbers
12−2454
Cancel out the common factor 2
6−454
Calculate
−6454
6454−6454i
x=±(6454−6454i)
Separate the equation into 2 possible cases
x=6454−6454ix=−6454+6454i
Solution
x1=−6454+6454i,x2=6454−6454i
Alternative Form
x1≈−0.451801+0.451801i,x2≈0.451801−0.451801i
Show Solution
