Question
Solve the inequality
x<24631
Alternative Form
x∈(−∞,24631)
Evaluate
5−(2×31x)<2(3−4x)
Multiply the terms
5−312x<2(3−4x)
Multiply both sides of the inequality by 31
(5−312x)×31<2(3−4x)×31
Multiply the terms
More Steps

Multiply the terms
(5−312x)×31
Apply the distributive property
5×31−312x×31
Reduce the fraction
5×31−2x
Multiply the terms
155−2x
155−2x<2(3−4x)×31
Multiply the terms
155−2x<186−248x
Move the expression to the left side
155−2x+248x<186
Move the expression to the right side
−2x+248x<186−155
Add and subtract
More Steps

Evaluate
−2x+248x
Collect like terms by calculating the sum or difference of their coefficients
(−2+248)x
Add the numbers
246x
246x<186−155
Add and subtract
246x<31
Divide both sides
246246x<24631
Solution
x<24631
Alternative Form
x∈(−∞,24631)
Show Solution
