Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=5−53,x2=5+53
Alternative Form
x1≈−3.660254,x2≈13.660254
Evaluate
50=2(2x−20)x
Simplify
More Steps

Evaluate
2(2x−20)x
Factor
22(x−10)x
Reduce the fraction
(x−10)x
Multiply the terms
x(x−10)
50=x(x−10)
Swap the sides
x(x−10)=50
Expand the expression
More Steps

Evaluate
x(x−10)
Apply the distributive property
x×x−x×10
Multiply the terms
x2−x×10
Use the commutative property to reorder the terms
x2−10x
x2−10x=50
Move the expression to the left side
x2−10x−50=0
Substitute a=1,b=−10 and c=−50 into the quadratic formula x=2a−b±b2−4ac
x=210±(−10)2−4(−50)
Simplify the expression
More Steps

Evaluate
(−10)2−4(−50)
Multiply the numbers
More Steps

Evaluate
4(−50)
Multiplying or dividing an odd number of negative terms equals a negative
−4×50
Multiply the numbers
−200
(−10)2−(−200)
Rewrite the expression
102−(−200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
102+200
Evaluate the power
100+200
Add the numbers
300
x=210±300
Simplify the radical expression
More Steps

Evaluate
300
Write the expression as a product where the root of one of the factors can be evaluated
100×3
Write the number in exponential form with the base of 10
102×3
The root of a product is equal to the product of the roots of each factor
102×3
Reduce the index of the radical and exponent with 2
103
x=210±103
Separate the equation into 2 possible cases
x=210+103x=210−103
Simplify the expression
More Steps

Evaluate
x=210+103
Divide the terms
More Steps

Evaluate
210+103
Rewrite the expression
22(5+53)
Reduce the fraction
5+53
x=5+53
x=5+53x=210−103
Simplify the expression
More Steps

Evaluate
x=210−103
Divide the terms
More Steps

Evaluate
210−103
Rewrite the expression
22(5−53)
Reduce the fraction
5−53
x=5−53
x=5+53x=5−53
Solution
x1=5−53,x2=5+53
Alternative Form
x1≈−3.660254,x2≈13.660254
Show Solution
