Question
Solve the equation
t={arcsin(101)+2kπ−arcsin(101)+π+2kπ,k∈Z
Alternative Form
t≈{5.73917∘+360∘k174.26083∘+360∘k,k∈Z
Alternative Form
t≈{0.100167+2kπ3.041425+2kπ,k∈Z
Evaluate
50sin(t)=5
Multiply both sides of the equation by 501
50sin(t)×501=5×501
Calculate
sin(t)=5×501
Calculate
More Steps

Evaluate
5×501
Reduce the numbers
1×101
Multiply the numbers
101
sin(t)=101
Use the inverse trigonometric function
t=arcsin(101)
Calculate
t=arcsin(101)t=−arcsin(101)+π
Add the period of 2kπ,k∈Z to find all solutions
t=arcsin(101)+2kπ,k∈Zt=−arcsin(101)+π+2kπ,k∈Z
Solution
t={arcsin(101)+2kπ−arcsin(101)+π+2kπ,k∈Z
Alternative Form
t≈{5.73917∘+360∘k174.26083∘+360∘k,k∈Z
Alternative Form
t≈{0.100167+2kπ3.041425+2kπ,k∈Z
Show Solution
