Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
q∈(−∞,−15317325)∪(0,+∞)
Evaluate
50q4×3>−11q×70
Multiply the terms
150q4>−11q×70
Multiply the terms
150q4>−770q
Move the expression to the left side
150q4−(−770q)>0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
150q4+770q>0
Rewrite the expression
150q4+770q=0
Factor the expression
10q(15q3+77)=0
Divide both sides
q(15q3+77)=0
Separate the equation into 2 possible cases
q=015q3+77=0
Solve the equation
More Steps

Evaluate
15q3+77=0
Move the constant to the right-hand side and change its sign
15q3=0−77
Removing 0 doesn't change the value,so remove it from the expression
15q3=−77
Divide both sides
1515q3=15−77
Divide the numbers
q3=15−77
Use b−a=−ba=−ba to rewrite the fraction
q3=−1577
Take the 3-th root on both sides of the equation
3q3=3−1577
Calculate
q=3−1577
Simplify the root
More Steps

Evaluate
3−1577
An odd root of a negative radicand is always a negative
−31577
To take a root of a fraction,take the root of the numerator and denominator separately
−315377
Multiply by the Conjugate
315×3152−377×3152
Simplify
315×3152−377×3225
Multiply the numbers
315×3152−317325
Multiply the numbers
15−317325
Calculate
−15317325
q=−15317325
q=0q=−15317325
Determine the test intervals using the critical values
q<−15317325−15317325<q<0q>0
Choose a value form each interval
q1=−3q2=−1q3=1
To determine if q<−15317325 is the solution to the inequality,test if the chosen value q=−3 satisfies the initial inequality
More Steps

Evaluate
150(−3)4>−770(−3)
Multiply the terms
More Steps

Evaluate
150(−3)4
Evaluate the power
150×81
Multiply the numbers
12150
12150>−770(−3)
Multiply the numbers
More Steps

Evaluate
−770(−3)
Multiplying or dividing an even number of negative terms equals a positive
770×3
Multiply the numbers
2310
12150>2310
Check the inequality
true
q<−15317325 is the solutionq2=−1q3=1
To determine if −15317325<q<0 is the solution to the inequality,test if the chosen value q=−1 satisfies the initial inequality
More Steps

Evaluate
150(−1)4>−770(−1)
Simplify
More Steps

Evaluate
150(−1)4
Evaluate the power
150×1
Any expression multiplied by 1 remains the same
150
150>−770(−1)
Simplify
150>770
Check the inequality
false
q<−15317325 is the solution−15317325<q<0 is not a solutionq3=1
To determine if q>0 is the solution to the inequality,test if the chosen value q=1 satisfies the initial inequality
More Steps

Evaluate
150×14>−770×1
Simplify
More Steps

Evaluate
150×14
1 raised to any power equals to 1
150×1
Any expression multiplied by 1 remains the same
150
150>−770×1
Any expression multiplied by 1 remains the same
150>−770
Check the inequality
true
q<−15317325 is the solution−15317325<q<0 is not a solutionq>0 is the solution
Solution
q∈(−∞,−15317325)∪(0,+∞)
Show Solution
