Question
Simplify the expression
179−76494x4
Evaluate
537÷3+(256−134)x4×57(24−35)
Subtract the numbers
537÷3+122x4×57(24−35)
Subtract the numbers
537÷3+122x4×57(−11)
Divide the numbers
179+122x4×57(−11)
Solution
More Steps

Multiply the terms
122x4×57(−11)
Rewrite the expression
−122x4×57×11
Multiply the terms
More Steps

Evaluate
122×57×11
Multiply the terms
6954×11
Multiply the numbers
76494
−76494x4
179−76494x4
Show Solution

Find the roots
x1=−764944179×764943,x2=764944179×764943
Alternative Form
x1≈−0.219941,x2≈0.219941
Evaluate
537÷3+(256−134)x4×57(24−35)
To find the roots of the expression,set the expression equal to 0
537÷3+(256−134)x4×57(24−35)=0
Subtract the numbers
537÷3+122x4×57(24−35)=0
Subtract the numbers
537÷3+122x4×57(−11)=0
Divide the numbers
179+122x4×57(−11)=0
Multiply
More Steps

Multiply the terms
122x4×57(−11)
Rewrite the expression
−122x4×57×11
Multiply the terms
More Steps

Evaluate
122×57×11
Multiply the terms
6954×11
Multiply the numbers
76494
−76494x4
179−76494x4=0
Move the constant to the right-hand side and change its sign
−76494x4=0−179
Removing 0 doesn't change the value,so remove it from the expression
−76494x4=−179
Change the signs on both sides of the equation
76494x4=179
Divide both sides
7649476494x4=76494179
Divide the numbers
x4=76494179
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±476494179
Simplify the expression
More Steps

Evaluate
476494179
To take a root of a fraction,take the root of the numerator and denominator separately
4764944179
Multiply by the Conjugate
476494×47649434179×4764943
The product of roots with the same index is equal to the root of the product
476494×47649434179×764943
Multiply the numbers
More Steps

Evaluate
476494×4764943
The product of roots with the same index is equal to the root of the product
476494×764943
Calculate the product
4764944
Reduce the index of the radical and exponent with 4
76494
764944179×764943
x=±764944179×764943
Separate the equation into 2 possible cases
x=764944179×764943x=−764944179×764943
Solution
x1=−764944179×764943,x2=764944179×764943
Alternative Form
x1≈−0.219941,x2≈0.219941
Show Solution
