Question
Simplify the expression
2268x5−30x4
Evaluate
54x2×42x3−30x4
Solution
More Steps

Evaluate
54x2×42x3
Multiply the terms
2268x2×x3
Multiply the terms with the same base by adding their exponents
2268x2+3
Add the numbers
2268x5
2268x5−30x4
Show Solution

Factor the expression
6x4(378x−5)
Evaluate
54x2×42x3−30x4
Multiply
More Steps

Evaluate
54x2×42x3
Multiply the terms
2268x2×x3
Multiply the terms with the same base by adding their exponents
2268x2+3
Add the numbers
2268x5
2268x5−30x4
Rewrite the expression
6x4×378x−6x4×5
Solution
6x4(378x−5)
Show Solution

Find the roots
x1=0,x2=3785
Alternative Form
x1=0,x2=0.01˙32275˙
Evaluate
54x2×42x3−30x4
To find the roots of the expression,set the expression equal to 0
54x2×42x3−30x4=0
Multiply
More Steps

Multiply the terms
54x2×42x3
Multiply the terms
2268x2×x3
Multiply the terms with the same base by adding their exponents
2268x2+3
Add the numbers
2268x5
2268x5−30x4=0
Factor the expression
6x4(378x−5)=0
Divide both sides
x4(378x−5)=0
Separate the equation into 2 possible cases
x4=0378x−5=0
The only way a power can be 0 is when the base equals 0
x=0378x−5=0
Solve the equation
More Steps

Evaluate
378x−5=0
Move the constant to the right-hand side and change its sign
378x=0+5
Removing 0 doesn't change the value,so remove it from the expression
378x=5
Divide both sides
378378x=3785
Divide the numbers
x=3785
x=0x=3785
Solution
x1=0,x2=3785
Alternative Form
x1=0,x2=0.01˙32275˙
Show Solution
