Question
Simplify the expression
d21712277600−1000d2
Evaluate
d25707592×300−1000
Multiply the terms
More Steps

Multiply the terms
d25707592×300
Multiply the terms
d25707592×300
Multiply the terms
d21712277600
d21712277600−1000
Reduce fractions to a common denominator
d21712277600−d21000d2
Solution
d21712277600−1000d2
Show Solution

Find the excluded values
d=0
Evaluate
d25707592×300−1000
To find the excluded values,set the denominators equal to 0
d2=0
Solution
d=0
Show Solution

Find the roots
d1=−5210701735,d2=5210701735
Alternative Form
d1≈−1308.540255,d2≈1308.540255
Evaluate
d25707592×300−1000
To find the roots of the expression,set the expression equal to 0
d25707592×300−1000=0
The only way a power can not be 0 is when the base not equals 0
d25707592×300−1000=0,d=0
Calculate
d25707592×300−1000=0
Multiply the terms
More Steps

Multiply the terms
d25707592×300
Multiply the terms
d25707592×300
Multiply the terms
d21712277600
d21712277600−1000=0
Subtract the terms
More Steps

Simplify
d21712277600−1000
Reduce fractions to a common denominator
d21712277600−d21000d2
Write all numerators above the common denominator
d21712277600−1000d2
d21712277600−1000d2=0
Cross multiply
1712277600−1000d2=d2×0
Simplify the equation
1712277600−1000d2=0
Rewrite the expression
−1000d2=−1712277600
Change the signs on both sides of the equation
1000d2=1712277600
Divide both sides
10001000d2=10001712277600
Divide the numbers
d2=10001712277600
Cancel out the common factor 200
d2=58561388
Take the root of both sides of the equation and remember to use both positive and negative roots
d=±58561388
Simplify the expression
More Steps

Evaluate
58561388
To take a root of a fraction,take the root of the numerator and denominator separately
58561388
Simplify the radical expression
More Steps

Evaluate
8561388
Write the expression as a product where the root of one of the factors can be evaluated
4×2140347
Write the number in exponential form with the base of 2
22×2140347
The root of a product is equal to the product of the roots of each factor
22×2140347
Reduce the index of the radical and exponent with 2
22140347
522140347
Multiply by the Conjugate
5×522140347×5
Multiply the numbers
More Steps

Evaluate
2140347×5
The product of roots with the same index is equal to the root of the product
2140347×5
Calculate the product
10701735
5×5210701735
When a square root of an expression is multiplied by itself,the result is that expression
5210701735
d=±5210701735
Separate the equation into 2 possible cases
d=5210701735d=−5210701735
Check if the solution is in the defined range
d=5210701735d=−5210701735,d=0
Find the intersection of the solution and the defined range
d=5210701735d=−5210701735
Solution
d1=−5210701735,d2=5210701735
Alternative Form
d1≈−1308.540255,d2≈1308.540255
Show Solution
