Question
Simplify the expression
40d4−50d5
Evaluate
5d2(8d2−10d3)
Apply the distributive property
5d2×8d2−5d2×10d3
Multiply the terms
More Steps

Evaluate
5d2×8d2
Multiply the numbers
40d2×d2
Multiply the terms
More Steps

Evaluate
d2×d2
Use the product rule an×am=an+m to simplify the expression
d2+2
Add the numbers
d4
40d4
40d4−5d2×10d3
Solution
More Steps

Evaluate
5d2×10d3
Multiply the numbers
50d2×d3
Multiply the terms
More Steps

Evaluate
d2×d3
Use the product rule an×am=an+m to simplify the expression
d2+3
Add the numbers
d5
50d5
40d4−50d5
Show Solution

Factor the expression
10d4(4−5d)
Evaluate
5d2(8d2−10d3)
Factor the expression
More Steps

Evaluate
8d2−10d3
Rewrite the expression
2d2×4−2d2×5d
Factor out 2d2 from the expression
2d2(4−5d)
5d2×2d2(4−5d)
Solution
10d4(4−5d)
Show Solution

Find the roots
d1=0,d2=54
Alternative Form
d1=0,d2=0.8
Evaluate
5d2(8d2−10d3)
To find the roots of the expression,set the expression equal to 0
5d2(8d2−10d3)=0
Elimination the left coefficient
d2(8d2−10d3)=0
Separate the equation into 2 possible cases
d2=08d2−10d3=0
The only way a power can be 0 is when the base equals 0
d=08d2−10d3=0
Solve the equation
More Steps

Evaluate
8d2−10d3=0
Factor the expression
2d2(4−5d)=0
Divide both sides
d2(4−5d)=0
Separate the equation into 2 possible cases
d2=04−5d=0
The only way a power can be 0 is when the base equals 0
d=04−5d=0
Solve the equation
More Steps

Evaluate
4−5d=0
Move the constant to the right-hand side and change its sign
−5d=0−4
Removing 0 doesn't change the value,so remove it from the expression
−5d=−4
Change the signs on both sides of the equation
5d=4
Divide both sides
55d=54
Divide the numbers
d=54
d=0d=54
d=0d=0d=54
Find the union
d=0d=54
Solution
d1=0,d2=54
Alternative Form
d1=0,d2=0.8
Show Solution
