Question
Calculate the value
3log10(2)+5log10(50)
Alternative Form
≈9.39794
Evaluate
5log10(50)+2log10(48)−5log10(2)−2log10(3)
Add the terms
More Steps

Rewrite the expression
5log10(50)+2log10(48)
Rewrite the expression
log10(505)+log10(482)
Use the logarithm product rule
log10(505×482)
Multiply the numbers
More Steps

Evaluate
505×482
Expand the expression
505×2304
Use the commutative property to reorder the terms
2304×505
log10(2304×505)
log10(2304×505)−5log10(2)−2log10(3)
Add the numbers
More Steps

Rewrite the expression
log10(2304×505)−5log10(2)
Rewrite the expression
log10(2304×505)−log10(25)
Use the logarithm base change rule
log10(2304×505)+log10(2−5)
Use the logarithm product rule
log10(2304×505×2−5)
Multiply the numbers
More Steps

Evaluate
2304×2−5
Evaluate the power
2304×321
Multiply the numbers
72
log10(72×505)
log10(72×505)−2log10(3)
Rewrite the expression
log10(72×505)−log10(32)
Use the logarithm base change rule
log10(72×505)+log10(3−2)
Use the logarithm product rule
log10(72×505×3−2)
Multiply the numbers
More Steps

Evaluate
72×3−2
Evaluate the power
72×91
Multiply the numbers
8
log10(8×505)
Use loga(x×y)=loga(x)+loga(y) to transform the expression
log10(8)+log10(505)
Simplify the expression
More Steps

Evaluate
log10(8)
Write the number in exponential form with the base of 2
log10(23)
Use logabn=nlogab to simplify the expression
3log10(2)
3log10(2)+log10(505)
Solution
3log10(2)+5log10(50)
Alternative Form
≈9.39794
Show Solution
