Question
Solve the equation
n1≈−0.900578,n2≈0.147435,n3≈0.753142
Evaluate
5n3×4=−2(1−7n)
Multiply the terms
20n3=−2(1−7n)
Expand the expression
More Steps

Evaluate
−2(1−7n)
Apply the distributive property
−2×1−(−2×7n)
Any expression multiplied by 1 remains the same
−2−(−2×7n)
Multiply the numbers
−2−(−14n)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2+14n
20n3=−2+14n
Move the expression to the left side
20n3−(−2+14n)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
20n3+2−14n=0
Factor the expression
2(10n3+1−7n)=0
Divide both sides
10n3+1−7n=0
Calculate
n≈−0.900578n≈0.147435n≈0.753142
Solution
n1≈−0.900578,n2≈0.147435,n3≈0.753142
Show Solution
