Question
Simplify the expression
70p3−105p2
Evaluate
5p(2p−3)(p×7)
Remove the parentheses
5p(2p−3)p×7
Multiply the terms
35p(2p−3)p
Multiply the terms
35p2(2p−3)
Apply the distributive property
35p2×2p−35p2×3
Multiply the terms
More Steps

Evaluate
35p2×2p
Multiply the numbers
70p2×p
Multiply the terms
More Steps

Evaluate
p2×p
Use the product rule an×am=an+m to simplify the expression
p2+1
Add the numbers
p3
70p3
70p3−35p2×3
Solution
70p3−105p2
Show Solution

Find the roots
p1=0,p2=23
Alternative Form
p1=0,p2=1.5
Evaluate
5p(2p−3)(p×7)
To find the roots of the expression,set the expression equal to 0
5p(2p−3)(p×7)=0
Use the commutative property to reorder the terms
5p(2p−3)×7p=0
Multiply
More Steps

Multiply the terms
5p(2p−3)×7p
Multiply the terms
35p(2p−3)p
Multiply the terms
35p2(2p−3)
35p2(2p−3)=0
Elimination the left coefficient
p2(2p−3)=0
Separate the equation into 2 possible cases
p2=02p−3=0
The only way a power can be 0 is when the base equals 0
p=02p−3=0
Solve the equation
More Steps

Evaluate
2p−3=0
Move the constant to the right-hand side and change its sign
2p=0+3
Removing 0 doesn't change the value,so remove it from the expression
2p=3
Divide both sides
22p=23
Divide the numbers
p=23
p=0p=23
Solution
p1=0,p2=23
Alternative Form
p1=0,p2=1.5
Show Solution
