Question
Solve the equation
r1=0,r2=153150
Alternative Form
r1=0,r2≈0.35422
Evaluate
5r3×9r2=2r2
Multiply
More Steps

Evaluate
5r3×9r2
Multiply the terms
45r3×r2
Multiply the terms with the same base by adding their exponents
45r3+2
Add the numbers
45r5
45r5=2r2
Add or subtract both sides
45r5−2r2=0
Factor the expression
r2(45r3−2)=0
Separate the equation into 2 possible cases
r2=045r3−2=0
The only way a power can be 0 is when the base equals 0
r=045r3−2=0
Solve the equation
More Steps

Evaluate
45r3−2=0
Move the constant to the right-hand side and change its sign
45r3=0+2
Removing 0 doesn't change the value,so remove it from the expression
45r3=2
Divide both sides
4545r3=452
Divide the numbers
r3=452
Take the 3-th root on both sides of the equation
3r3=3452
Calculate
r=3452
Simplify the root
More Steps

Evaluate
3452
To take a root of a fraction,take the root of the numerator and denominator separately
34532
Multiply by the Conjugate
345×345232×3452
Simplify
345×345232×3375
Multiply the numbers
345×345233150
Multiply the numbers
4533150
Cancel out the common factor 3
153150
r=153150
r=0r=153150
Solution
r1=0,r2=153150
Alternative Form
r1=0,r2≈0.35422
Show Solution

Rewrite the equation
2025x10+10125x8y2+20250x6y4+20250x4y6+10125x2y8+2025y10=4x4+8x2y2+4y4
Evaluate
5r3×9r2=2r2
Evaluate
More Steps

Evaluate
5r3×9r2
Multiply the terms
45r3×r2
Multiply the terms with the same base by adding their exponents
45r3+2
Add the numbers
45r5
45r5=2r2
Rewrite the expression
45r5−2r2=0
Use substitution
More Steps

Evaluate
45r5−2r2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
45r5−2(x2+y2)
Simplify the expression
45r5−2x2−2y2
45r5−2x2−2y2=0
Simplify the expression
45r5=2x2+2y2
Evaluate
45r4×r=2x2+2y2
Evaluate
45(x2+y2)2r=2x2+2y2
Square both sides of the equation
(45(x2+y2)2r)2=(2x2+2y2)2
Evaluate
(45(x2+y2)2)2r2=(2x2+2y2)2
To covert the equation to rectangular coordinates using conversion formulas,substitute x2+y2 for r2
(45(x2+y2)2)2(x2+y2)=(2x2+2y2)2
Use substitution
2025(x2+y2)5=(2x2+2y2)2
Solution
2025x10+10125x8y2+20250x6y4+20250x4y6+10125x2y8+2025y10=4x4+8x2y2+4y4
Show Solution
