Question
Solve the equation
Solve for x
Solve for y
x=54y6
Evaluate
5x−4y6=0
Move the expression to the right-hand side and change its sign
5x=0+4y6
Add the terms
5x=4y6
Divide both sides
55x=54y6
Solution
x=54y6
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
5x−4y6=0
To test if the graph of 5x−4y6=0 is symmetry with respect to the origin,substitute -x for x and -y for y
5(−x)−4(−y)6=0
Evaluate
More Steps

Evaluate
5(−x)−4(−y)6
Multiply the numbers
−5x−4(−y)6
Multiply the terms
−5x−4y6
−5x−4y6=0
Solution
Not symmetry with respect to the origin
Show Solution

Rewrite the equation
r=0r=5455cos(θ)csc(θ)×csc(θ)
Evaluate
5x−4y6=0
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
5cos(θ)×r−4(sin(θ)×r)6=0
Factor the expression
−4sin6(θ)×r6+5cos(θ)×r=0
Factor the expression
r(−4sin6(θ)×r5+5cos(θ))=0
When the product of factors equals 0,at least one factor is 0
r=0−4sin6(θ)×r5+5cos(θ)=0
Solution
More Steps

Factor the expression
−4sin6(θ)×r5+5cos(θ)=0
Subtract the terms
−4sin6(θ)×r5+5cos(θ)−5cos(θ)=0−5cos(θ)
Evaluate
−4sin6(θ)×r5=−5cos(θ)
Divide the terms
r5=4sin6(θ)5cos(θ)
Simplify the expression
r5=45cos(θ)csc6(θ)
Simplify the expression
More Steps

Evaluate
545cos(θ)csc6(θ)
To take a root of a fraction,take the root of the numerator and denominator separately
5455cos(θ)csc6(θ)
Simplify the radical expression
5455cos(θ)csc(θ)×csc(θ)
r=5455cos(θ)csc(θ)×csc(θ)
r=0r=5455cos(θ)csc(θ)×csc(θ)
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=24y55
Calculate
5x−4y6=0
Take the derivative of both sides
dxd(5x−4y6)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(5x−4y6)
Use differentiation rules
dxd(5x)+dxd(−4y6)
Evaluate the derivative
More Steps

Evaluate
dxd(5x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x)
Use dxdxn=nxn−1 to find derivative
5×1
Any expression multiplied by 1 remains the same
5
5+dxd(−4y6)
Evaluate the derivative
More Steps

Evaluate
dxd(−4y6)
Use differentiation rules
dyd(−4y6)×dxdy
Evaluate the derivative
−24y5dxdy
5−24y5dxdy
5−24y5dxdy=dxd(0)
Calculate the derivative
5−24y5dxdy=0
Move the constant to the right-hand side and change its sign
−24y5dxdy=0−5
Removing 0 doesn't change the value,so remove it from the expression
−24y5dxdy=−5
Divide both sides
−24y5−24y5dxdy=−24y5−5
Divide the numbers
dxdy=−24y5−5
Solution
dxdy=24y55
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=−576y11125
Calculate
5x−4y6=0
Take the derivative of both sides
dxd(5x−4y6)=dxd(0)
Calculate the derivative
More Steps

Evaluate
dxd(5x−4y6)
Use differentiation rules
dxd(5x)+dxd(−4y6)
Evaluate the derivative
More Steps

Evaluate
dxd(5x)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
5×dxd(x)
Use dxdxn=nxn−1 to find derivative
5×1
Any expression multiplied by 1 remains the same
5
5+dxd(−4y6)
Evaluate the derivative
More Steps

Evaluate
dxd(−4y6)
Use differentiation rules
dyd(−4y6)×dxdy
Evaluate the derivative
−24y5dxdy
5−24y5dxdy
5−24y5dxdy=dxd(0)
Calculate the derivative
5−24y5dxdy=0
Move the constant to the right-hand side and change its sign
−24y5dxdy=0−5
Removing 0 doesn't change the value,so remove it from the expression
−24y5dxdy=−5
Divide both sides
−24y5−24y5dxdy=−24y5−5
Divide the numbers
dxdy=−24y5−5
Cancel out the common factor −1
dxdy=24y55
Take the derivative of both sides
dxd(dxdy)=dxd(24y55)
Calculate the derivative
dx2d2y=dxd(24y55)
Use differentiation rules
dx2d2y=245×dxd(y51)
Rewrite the expression in exponential form
dx2d2y=245×dxd(y−5)
Calculate the derivative
More Steps

Evaluate
dxd(y−5)
Use differentiation rules
dyd(y−5)×dxdy
Use dxdxn=nxn−1 to find derivative
−5y−6dxdy
dx2d2y=245(−5y−6dxdy)
Rewrite the expression
dx2d2y=245(−y65dxdy)
Calculate
dx2d2y=−24y625dxdy
Use equation dxdy=24y55 to substitute
dx2d2y=−24y625×24y55
Solution
More Steps

Calculate
−24y625×24y55
Multiply the terms
More Steps

Multiply the terms
25×24y55
Multiply the terms
24y525×5
Multiply the terms
24y5125
−24y624y5125
Divide the terms
More Steps

Evaluate
24y624y5125
Multiply by the reciprocal
24y5125×24y61
Multiply the terms
24y5×24y6125
Multiply the terms
576y11125
−576y11125
dx2d2y=−576y11125
Show Solution
