Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=1051−3589,x2=1051+3589
Alternative Form
x1≈−2.180797,x2≈12.380797
Evaluate
5x×91x−15−37x−5=310x−5
Simplify
More Steps

Evaluate
5x×91x−15−37x−5
Multiply
More Steps

Multiply the terms
5x×91x
Multiply the numbers
95x×x
Multiply the terms
95x2
95x2−15−37x−5
Subtract the numbers
95x2−20−37x
95x2−20−37x=310x−5
Move the expression to the left side
95x2−15−317x=0
Rewrite in standard form
95x2−317x−15=0
Multiply both sides
9(95x2−317x−15)=9×0
Calculate
5x2−51x−135=0
Substitute a=5,b=−51 and c=−135 into the quadratic formula x=2a−b±b2−4ac
x=2×551±(−51)2−4×5(−135)
Simplify the expression
x=1051±(−51)2−4×5(−135)
Simplify the expression
More Steps

Evaluate
(−51)2−4×5(−135)
Multiply
More Steps

Multiply the terms
4×5(−135)
Rewrite the expression
−4×5×135
Multiply the terms
−2700
(−51)2−(−2700)
Rewrite the expression
512−(−2700)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
512+2700
Evaluate the power
2601+2700
Add the numbers
5301
x=1051±5301
Simplify the radical expression
More Steps

Evaluate
5301
Write the expression as a product where the root of one of the factors can be evaluated
9×589
Write the number in exponential form with the base of 3
32×589
The root of a product is equal to the product of the roots of each factor
32×589
Reduce the index of the radical and exponent with 2
3589
x=1051±3589
Separate the equation into 2 possible cases
x=1051+3589x=1051−3589
Solution
x1=1051−3589,x2=1051+3589
Alternative Form
x1≈−2.180797,x2≈12.380797
Show Solution
