Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=5−13,x2=5+13
Alternative Form
x1≈1.394449,x2≈8.605551
Evaluate
5x2−50x=−60
Move the expression to the left side
5x2−50x+60=0
Substitute a=5,b=−50 and c=60 into the quadratic formula x=2a−b±b2−4ac
x=2×550±(−50)2−4×5×60
Simplify the expression
x=1050±(−50)2−4×5×60
Simplify the expression
More Steps

Evaluate
(−50)2−4×5×60
Multiply the terms
More Steps

Multiply the terms
4×5×60
Multiply the terms
20×60
Multiply the numbers
1200
(−50)2−1200
Rewrite the expression
502−1200
Evaluate the power
2500−1200
Subtract the numbers
1300
x=1050±1300
Simplify the radical expression
More Steps

Evaluate
1300
Write the expression as a product where the root of one of the factors can be evaluated
100×13
Write the number in exponential form with the base of 10
102×13
The root of a product is equal to the product of the roots of each factor
102×13
Reduce the index of the radical and exponent with 2
1013
x=1050±1013
Separate the equation into 2 possible cases
x=1050+1013x=1050−1013
Simplify the expression
More Steps

Evaluate
x=1050+1013
Divide the terms
More Steps

Evaluate
1050+1013
Rewrite the expression
1010(5+13)
Reduce the fraction
5+13
x=5+13
x=5+13x=1050−1013
Simplify the expression
More Steps

Evaluate
x=1050−1013
Divide the terms
More Steps

Evaluate
1050−1013
Rewrite the expression
1010(5−13)
Reduce the fraction
5−13
x=5−13
x=5+13x=5−13
Solution
x1=5−13,x2=5+13
Alternative Form
x1≈1.394449,x2≈8.605551
Show Solution
