Question
Solve the equation
a1≈−7.821193,a2≈7.074035
Evaluate
a6−7=a−a2−7a49×a1
Find the domain
More Steps

Evaluate
{a=0a2−7a=0
Calculate
More Steps

Evaluate
a2−7a=0
Add the same value to both sides
a2−7a+449=449
Evaluate
(a−27)2=449
Take the root of both sides of the equation and remember to use both positive and negative roots
a−27=±449
Simplify the expression
a−27=±27
Separate the inequality into 2 possible cases
{a−27=27a−27=−27
Calculate
{a=7a−27=−27
Cancel equal terms on both sides of the expression
{a=7a=0
Find the intersection
a∈(−∞,0)∪(0,7)∪(7,+∞)
{a=0a∈(−∞,0)∪(0,7)∪(7,+∞)
Find the intersection
a∈(−∞,0)∪(0,7)∪(7,+∞)
a6−7=a−a2−7a49×a1,a∈(−∞,0)∪(0,7)∪(7,+∞)
Multiply the terms
More Steps

Multiply the terms
a2−7a49×a1
Multiply the terms
(a2−7a)a49
Multiply the terms
a(a2−7a)49
a6−7=a−a(a2−7a)49
Multiply both sides of the equation by LCD
(a6−7)a(a2−7a)=(a−a(a2−7a)49)a(a2−7a)
Simplify the equation
More Steps

Evaluate
(a6−7)a(a2−7a)
Apply the distributive property
a6×a(a2−7a)−7a(a2−7a)
Simplify
6(a2−7a)−7a(a2−7a)
Expand the expression
More Steps

Calculate
6(a2−7a)
Apply the distributive property
6a2−6×7a
Multiply the numbers
6a2−42a
6a2−42a−7a(a2−7a)
Expand the expression
More Steps

Calculate
−7a(a2−7a)
Apply the distributive property
−7a×a2−(−7a×7a)
Multiply the terms
−7a3−(−7a×7a)
Multiply the terms
−7a3−(−49a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−7a3+49a2
6a2−42a−7a3+49a2
Add the terms
More Steps

Evaluate
6a2+49a2
Collect like terms by calculating the sum or difference of their coefficients
(6+49)a2
Add the numbers
55a2
55a2−42a−7a3
55a2−42a−7a3=(a−a(a2−7a)49)a(a2−7a)
Simplify the equation
More Steps

Evaluate
(a−a(a2−7a)49)a(a2−7a)
Apply the distributive property
a×a(a2−7a)−a(a2−7a)49×a(a2−7a)
Simplify
a×a(a2−7a)−49
Multiply the terms
a2(a2−7a)−49
Expand the expression
More Steps

Evaluate
a2(a2−7a)
Apply the distributive property
a2×a2−a2×7a
Multiply the terms
a4−a2×7a
Multiply the terms
a4−7a3
a4−7a3−49
55a2−42a−7a3=a4−7a3−49
Cancel equal terms on both sides of the expression
55a2−42a=a4−49
Move the expression to the left side
55a2−42a−(a4−49)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
55a2−42a−a4+49=0
Calculate
a≈−7.821193a≈7.074035
Check if the solution is in the defined range
a≈−7.821193a≈7.074035,a∈(−∞,0)∪(0,7)∪(7,+∞)
Find the intersection of the solution and the defined range
a≈−7.821193a≈7.074035
Solution
a1≈−7.821193,a2≈7.074035
Show Solution
