Question
Simplify the expression
12y−30−24y6+60y5
Evaluate
6(2y−5)−12(2y−5)y5
Multiply the terms
6(2y−5)−12y5(2y−5)
Expand the expression
More Steps

Calculate
6(2y−5)
Apply the distributive property
6×2y−6×5
Multiply the numbers
12y−6×5
Multiply the numbers
12y−30
12y−30−12y5(2y−5)
Solution
More Steps

Calculate
−12y5(2y−5)
Apply the distributive property
−12y5×2y−(−12y5×5)
Multiply the terms
More Steps

Evaluate
−12y5×2y
Multiply the numbers
−24y5×y
Multiply the terms
−24y6
−24y6−(−12y5×5)
Multiply the numbers
−24y6−(−60y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24y6+60y5
12y−30−24y6+60y5
Show Solution

Factor the expression
6(2y−5)(1−2y5)
Evaluate
6(2y−5)−12(2y−5)y5
Multiply the terms
6(2y−5)−12y5(2y−5)
Rewrite the expression
6(2y−5)−6(2y−5)×2y5
Solution
6(2y−5)(1−2y5)
Show Solution

Find the roots
y1=2516,y2=25
Alternative Form
y1≈0.870551,y2=2.5
Evaluate
6(2y−5)−12(2y−5)(y5)
To find the roots of the expression,set the expression equal to 0
6(2y−5)−12(2y−5)(y5)=0
Calculate
6(2y−5)−12(2y−5)y5=0
Multiply the terms
6(2y−5)−12y5(2y−5)=0
Calculate
More Steps

Evaluate
6(2y−5)−12y5(2y−5)
Expand the expression
More Steps

Calculate
6(2y−5)
Apply the distributive property
6×2y−6×5
Multiply the numbers
12y−6×5
Multiply the numbers
12y−30
12y−30−12y5(2y−5)
Expand the expression
More Steps

Calculate
−12y5(2y−5)
Apply the distributive property
−12y5×2y−(−12y5×5)
Multiply the terms
−24y6−(−12y5×5)
Multiply the numbers
−24y6−(−60y5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24y6+60y5
12y−30−24y6+60y5
12y−30−24y6+60y5=0
Factor the expression
−6(5−2y)(1−2y5)=0
Divide both sides
(5−2y)(1−2y5)=0
Separate the equation into 2 possible cases
5−2y=01−2y5=0
Solve the equation
More Steps

Evaluate
5−2y=0
Move the constant to the right-hand side and change its sign
−2y=0−5
Removing 0 doesn't change the value,so remove it from the expression
−2y=−5
Change the signs on both sides of the equation
2y=5
Divide both sides
22y=25
Divide the numbers
y=25
y=251−2y5=0
Solve the equation
More Steps

Evaluate
1−2y5=0
Move the constant to the right-hand side and change its sign
−2y5=0−1
Removing 0 doesn't change the value,so remove it from the expression
−2y5=−1
Change the signs on both sides of the equation
2y5=1
Divide both sides
22y5=21
Divide the numbers
y5=21
Take the 5-th root on both sides of the equation
5y5=521
Calculate
y=521
Simplify the root
More Steps

Evaluate
521
To take a root of a fraction,take the root of the numerator and denominator separately
5251
Simplify the radical expression
521
Multiply by the Conjugate
52×524524
Simplify
52×524516
Multiply the numbers
2516
y=2516
y=25y=2516
Solution
y1=2516,y2=25
Alternative Form
y1≈0.870551,y2=2.5
Show Solution
