Question
Simplify the expression
−23n+2+5632n
Evaluate
6×8n+1+16×23n−102×23n+1−7×8n
Cancel out the common factor 2
6×8n+1+16×23n−51×23n+1−7×8n
Multiply
More Steps

Multiply the terms
16×23n
Transform the expression
24×23n
Multiply the terms with the same base by adding their exponents
24+3n
Add the numbers
27n
6×8n+1+27n−51×23n+1−7×8n
Multiply the numbers
6×8n+1+27n−523n+1−7×8n
Evaluate the power
6×8n+1+128n−523n+1−7×8n
Evaluate the power
6×8n+1+128n−58n+1−7×8n
Subtract the terms
More Steps

Evaluate
6×8n−7×8n
Rewrite the expression
3×23n+1−27×23n+1
Factor the expression
(3−27)×23n+1
Subtract the numbers
More Steps

Evaluate
3−27
Reduce fractions to a common denominator
23×2−27
Write all numerators above the common denominator
23×2−7
Multiply the numbers
26−7
Subtract the numbers
2−1
Use b−a=−ba=−ba to rewrite the fraction
−21
−21×23n+1
Cancel out the common factor 2
−1×23n
Multiply the terms
−23n
−23n+1+128n−58n+1
Add the numbers
−23n+2+128n−58n
Solution
More Steps

Evaluate
128n−58n
Collect like terms by calculating the sum or difference of their coefficients
(128−58)n
Subtract the numbers
More Steps

Evaluate
128−58
Reduce fractions to a common denominator
5128×5−58
Write all numerators above the common denominator
5128×5−8
Multiply the numbers
5640−8
Subtract the numbers
5632
5632n
−23n+2+5632n
Show Solution

Factor the expression
−52(5×23n−1−5−316n)
Evaluate
6×8n+1+16×23n−102×23n+1−7×8n
Multiply
More Steps

Multiply the terms
16×23n
Transform the expression
24×23n
Multiply the terms with the same base by adding their exponents
24+3n
Add the numbers
27n
6×8n+1+27n−102×23n+1−7×8n
Cancel out the common factor 2
6×8n+1+27n−51×23n+1−7×8n
Multiply the numbers
6×8n+1+27n−523n+1−7×8n
Subtract the terms
More Steps

Simplify
6×8n+1+27n−523n
Subtract the terms
More Steps

Evaluate
27n−523n
Collect like terms by calculating the sum or difference of their coefficients
(27−523)n
Subtract the numbers
5632n
6×8n+1+5632n
6×8n+1+5632n+1−7×8n
Add the numbers
6×8n+2+5632n−7×8n
Subtract the terms
More Steps

Evaluate
6×8n−7×8n
Rewrite the expression
3×23n+1−27×23n+1
Factor the expression
(3−27)×23n+1
Subtract the numbers
More Steps

Evaluate
3−27
Reduce fractions to a common denominator
23×2−27
Write all numerators above the common denominator
23×2−7
Multiply the numbers
26−7
Subtract the numbers
2−1
Use b−a=−ba=−ba to rewrite the fraction
−21
−21×23n+1
Cancel out the common factor 2
−1×23n
Multiply the terms
−23n
−23n+2+5632n
Factor out 51 from the expression
51(−5×23n+10+632n)
Factor the expression
51(−2(5×23n−1−5−316n))
Calculate
51(−2)(5×23n−1−5−316n)
Solution
−52(5×23n−1−5−316n)
Show Solution
