Question
6(j−10)=−8j×10j
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
j1=−803+4809,j2=80−3+4809
Alternative Form
j1≈−0.904337,j2≈0.829337
Evaluate
6(j−10)=−8j×10j
Multiply
More Steps

Evaluate
−8j×10j
Multiply the terms
−80j×j
Multiply the terms
−80j2
6(j−10)=−80j2
Swap the sides
−80j2=6(j−10)
Expand the expression
More Steps

Evaluate
6(j−10)
Apply the distributive property
6j−6×10
Multiply the numbers
6j−60
−80j2=6j−60
Move the expression to the left side
−80j2−6j+60=0
Multiply both sides
80j2+6j−60=0
Substitute a=80,b=6 and c=−60 into the quadratic formula j=2a−b±b2−4ac
j=2×80−6±62−4×80(−60)
Simplify the expression
j=160−6±62−4×80(−60)
Simplify the expression
More Steps

Evaluate
62−4×80(−60)
Multiply
More Steps

Multiply the terms
4×80(−60)
Rewrite the expression
−4×80×60
Multiply the terms
−19200
62−(−19200)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
62+19200
Evaluate the power
36+19200
Add the numbers
19236
j=160−6±19236
Simplify the radical expression
More Steps

Evaluate
19236
Write the expression as a product where the root of one of the factors can be evaluated
4×4809
Write the number in exponential form with the base of 2
22×4809
The root of a product is equal to the product of the roots of each factor
22×4809
Reduce the index of the radical and exponent with 2
24809
j=160−6±24809
Separate the equation into 2 possible cases
j=160−6+24809j=160−6−24809
Simplify the expression
More Steps

Evaluate
j=160−6+24809
Divide the terms
More Steps

Evaluate
160−6+24809
Rewrite the expression
1602(−3+4809)
Cancel out the common factor 2
80−3+4809
j=80−3+4809
j=80−3+4809j=160−6−24809
Simplify the expression
More Steps

Evaluate
j=160−6−24809
Divide the terms
More Steps

Evaluate
160−6−24809
Rewrite the expression
1602(−3−4809)
Cancel out the common factor 2
80−3−4809
Use b−a=−ba=−ba to rewrite the fraction
−803+4809
j=−803+4809
j=80−3+4809j=−803+4809
Solution
j1=−803+4809,j2=80−3+4809
Alternative Form
j1≈−0.904337,j2≈0.829337
Show Solution
