Question
Solve the inequality
Solve the inequality by testing the values in the interval
Solve the inequality by separating into cases
x>21
Alternative Form
x∈(21,+∞)
Evaluate
6(x2×1)−(2x−4)×3x2<3(5x2×1)
Remove the parentheses
6x2×1−(2x−4)×3x2<3×5x2×1
Simplify
More Steps

Evaluate
6x2×1−(2x−4)×3x2
Multiply the terms
6x2−(2x−4)×3x2
Multiply the terms
6x2−3x2(2x−4)
6x2−3x2(2x−4)<3×5x2×1
Multiply the terms
More Steps

Evaluate
3×5x2×1
Rewrite the expression
3×5x2
Multiply the terms
15x2
6x2−3x2(2x−4)<15x2
Move the expression to the left side
6x2−3x2(2x−4)−15x2<0
Subtract the terms
More Steps

Evaluate
6x2−3x2(2x−4)−15x2
Expand the expression
More Steps

Calculate
−3x2(2x−4)
Apply the distributive property
−3x2×2x−(−3x2×4)
Multiply the terms
−6x3−(−3x2×4)
Multiply the numbers
−6x3−(−12x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x3+12x2
6x2−6x3+12x2−15x2
Calculate the sum or difference
More Steps

Evaluate
6x2+12x2−15x2
Collect like terms by calculating the sum or difference of their coefficients
(6+12−15)x2
Calculate the sum or difference
3x2
3x2−6x3
3x2−6x3<0
Rewrite the expression
3x2−6x3=0
Factor the expression
3x2(1−2x)=0
Divide both sides
x2(1−2x)=0
Separate the equation into 2 possible cases
x2=01−2x=0
The only way a power can be 0 is when the base equals 0
x=01−2x=0
Solve the equation
More Steps

Evaluate
1−2x=0
Move the constant to the right-hand side and change its sign
−2x=0−1
Removing 0 doesn't change the value,so remove it from the expression
−2x=−1
Change the signs on both sides of the equation
2x=1
Divide both sides
22x=21
Divide the numbers
x=21
x=0x=21
Determine the test intervals using the critical values
x<00<x<21x>21
Choose a value form each interval
x1=−1x2=41x3=2
To determine if x<0 is the solution to the inequality,test if the chosen value x=−1 satisfies the initial inequality
More Steps

Evaluate
6(−1)2−3(−1)2(2(−1)−4)<15(−1)2
Simplify
More Steps

Evaluate
6(−1)2−3(−1)2(2(−1)−4)
Simplify
6(−1)2−3(−1)2(−2−4)
Subtract the numbers
6(−1)2−3(−1)2(−6)
Evaluate the power
6×1−3(−1)2(−6)
Evaluate the power
6×1−3×1×(−6)
Any expression multiplied by 1 remains the same
6−3×1×(−6)
Multiply the terms
6+18
Add the numbers
24
24<15(−1)2
Simplify
More Steps

Evaluate
15(−1)2
Evaluate the power
15×1
Any expression multiplied by 1 remains the same
15
24<15
Check the inequality
false
x<0 is not a solutionx2=41x3=2
To determine if 0<x<21 is the solution to the inequality,test if the chosen value x=41 satisfies the initial inequality
More Steps

Evaluate
6(41)2−3(41)2(2×41−4)<15(41)2
Simplify
More Steps

Evaluate
6(41)2−3(41)2(2×41−4)
Multiply the numbers
6(41)2−3(41)2(21−4)
Subtract the numbers
6(41)2−3(41)2(−27)
Multiply the terms
83−3(41)2(−27)
Multiply
83+3221
Reduce fractions to a common denominator
8×43×4+3221
Multiply the numbers
323×4+3221
Write all numerators above the common denominator
323×4+21
Multiply the numbers
3212+21
Add the numbers
3233
3233<15(41)2
Multiply the terms
More Steps

Evaluate
15(41)2
Evaluate the power
15×161
Multiply the numbers
1615
3233<1615
Calculate
1.03125<1615
Calculate
1.03125<0.9375
Check the inequality
false
x<0 is not a solution0<x<21 is not a solutionx3=2
To determine if x>21 is the solution to the inequality,test if the chosen value x=2 satisfies the initial inequality
More Steps

Evaluate
6×22−3×22(2×2−4)<15×22
Simplify
More Steps

Evaluate
6×22−3×22(2×2−4)
Multiply the numbers
6×22−3×22(4−4)
Subtract the numbers
6×22−3×22×0
Any expression multiplied by 0 equals 0
6×22+0
Multiply the terms
24+0
Removing 0 doesn't change the value,so remove it from the expression
24
24<15×22
Multiply the terms
More Steps

Evaluate
15×22
Evaluate the power
15×4
Multiply the numbers
60
24<60
Check the inequality
true
x<0 is not a solution0<x<21 is not a solutionx>21 is the solution
Solution
x>21
Alternative Form
x∈(21,+∞)
Show Solution
