Question
Solve the equation
x1=−33315,x2=0
Alternative Form
x1≈−2.268031,x2=0
Evaluate
6x4=−7(x×10)
Remove the parentheses
6x4=−7x×10
Multiply the terms
6x4=−70x
Add or subtract both sides
6x4−(−70x)=0
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
6x4+70x=0
Factor the expression
2x(3x3+35)=0
Divide both sides
x(3x3+35)=0
Separate the equation into 2 possible cases
x=03x3+35=0
Solve the equation
More Steps

Evaluate
3x3+35=0
Move the constant to the right-hand side and change its sign
3x3=0−35
Removing 0 doesn't change the value,so remove it from the expression
3x3=−35
Divide both sides
33x3=3−35
Divide the numbers
x3=3−35
Use b−a=−ba=−ba to rewrite the fraction
x3=−335
Take the 3-th root on both sides of the equation
3x3=3−335
Calculate
x=3−335
Simplify the root
More Steps

Evaluate
3−335
An odd root of a negative radicand is always a negative
−3335
To take a root of a fraction,take the root of the numerator and denominator separately
−33335
Multiply by the Conjugate
33×332−335×332
Simplify
33×332−335×39
Multiply the numbers
33×332−3315
Multiply the numbers
3−3315
Calculate
−33315
x=−33315
x=0x=−33315
Solution
x1=−33315,x2=0
Alternative Form
x1≈−2.268031,x2=0
Show Solution
