Question
Solve the equation(The real numbers system)
y∈/R
Alternative Form
No real solution
Evaluate
6y2=3(2y−4)
Expand the expression
More Steps

Evaluate
3(2y−4)
Apply the distributive property
3×2y−3×4
Multiply the numbers
6y−3×4
Multiply the numbers
6y−12
6y2=6y−12
Move the expression to the left side
6y2−6y+12=0
Substitute a=6,b=−6 and c=12 into the quadratic formula y=2a−b±b2−4ac
y=2×66±(−6)2−4×6×12
Simplify the expression
y=126±(−6)2−4×6×12
Simplify the expression
More Steps

Evaluate
(−6)2−4×6×12
Multiply the terms
More Steps

Multiply the terms
4×6×12
Multiply the terms
24×12
Multiply the numbers
288
(−6)2−288
Rewrite the expression
62−288
Evaluate the power
36−288
Subtract the numbers
−252
y=126±−252
Solution
y∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
y1=21−27i,y2=21+27i
Alternative Form
y1≈0.5−1.322876i,y2≈0.5+1.322876i
Evaluate
6y2=3(2y−4)
Expand the expression
More Steps

Evaluate
3(2y−4)
Apply the distributive property
3×2y−3×4
Multiply the numbers
6y−3×4
Multiply the numbers
6y−12
6y2=6y−12
Move the expression to the left side
6y2−6y+12=0
Substitute a=6,b=−6 and c=12 into the quadratic formula y=2a−b±b2−4ac
y=2×66±(−6)2−4×6×12
Simplify the expression
y=126±(−6)2−4×6×12
Simplify the expression
More Steps

Evaluate
(−6)2−4×6×12
Multiply the terms
More Steps

Multiply the terms
4×6×12
Multiply the terms
24×12
Multiply the numbers
288
(−6)2−288
Rewrite the expression
62−288
Evaluate the power
36−288
Subtract the numbers
−252
y=126±−252
Simplify the radical expression
More Steps

Evaluate
−252
Evaluate the power
252×−1
Evaluate the power
252×i
Evaluate the power
More Steps

Evaluate
252
Write the expression as a product where the root of one of the factors can be evaluated
36×7
Write the number in exponential form with the base of 6
62×7
The root of a product is equal to the product of the roots of each factor
62×7
Reduce the index of the radical and exponent with 2
67
67×i
y=126±67×i
Separate the equation into 2 possible cases
y=126+67×iy=126−67×i
Simplify the expression
More Steps

Evaluate
y=126+67×i
Divide the terms
More Steps

Evaluate
126+67×i
Rewrite the expression
126(1+7×i)
Cancel out the common factor 6
21+7×i
Simplify
21+27i
y=21+27i
y=21+27iy=126−67×i
Simplify the expression
More Steps

Evaluate
y=126−67×i
Divide the terms
More Steps

Evaluate
126−67×i
Rewrite the expression
126(1−7×i)
Cancel out the common factor 6
21−7×i
Simplify
21−27i
y=21−27i
y=21+27iy=21−27i
Solution
y1=21−27i,y2=21+27i
Alternative Form
y1≈0.5−1.322876i,y2≈0.5+1.322876i
Show Solution
