Question
Solve the equation(The real numbers system)
x∈/R
Alternative Form
No real solution
Evaluate
6−(1−x)×5x=0
Multiply the first two terms
6−5(1−x)x=0
Expand the expression
More Steps

Evaluate
−5(1−x)x
Multiply the terms
More Steps

Evaluate
−5(1−x)
Apply the distributive property
−5×1−(−5x)
Any expression multiplied by 1 remains the same
−5−(−5x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5+5x
(−5+5x)x
Apply the distributive property
−5x+5x×x
Multiply the terms
−5x+5x2
6−5x+5x2=0
Rewrite in standard form
5x2−5x+6=0
Substitute a=5,b=−5 and c=6 into the quadratic formula x=2a−b±b2−4ac
x=2×55±(−5)2−4×5×6
Simplify the expression
x=105±(−5)2−4×5×6
Simplify the expression
More Steps

Evaluate
(−5)2−4×5×6
Multiply the terms
More Steps

Multiply the terms
4×5×6
Multiply the terms
20×6
Multiply the numbers
120
(−5)2−120
Rewrite the expression
52−120
Evaluate the power
25−120
Subtract the numbers
−95
x=105±−95
Solution
x∈/R
Alternative Form
No real solution
Show Solution

Solve the equation(The complex numbers system)
Solve using the quadratic formula in the complex numbers system
Solve by completing the square in the complex numbers system
Solve using the PQ formula in the complex numbers system
x1=21−1095i,x2=21+1095i
Alternative Form
x1≈0.5−0.974679i,x2≈0.5+0.974679i
Evaluate
6−(1−x)×5x=0
Multiply the first two terms
6−5(1−x)x=0
Expand the expression
More Steps

Evaluate
−5(1−x)x
Multiply the terms
More Steps

Evaluate
−5(1−x)
Apply the distributive property
−5×1−(−5x)
Any expression multiplied by 1 remains the same
−5−(−5x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−5+5x
(−5+5x)x
Apply the distributive property
−5x+5x×x
Multiply the terms
−5x+5x2
6−5x+5x2=0
Rewrite in standard form
5x2−5x+6=0
Substitute a=5,b=−5 and c=6 into the quadratic formula x=2a−b±b2−4ac
x=2×55±(−5)2−4×5×6
Simplify the expression
x=105±(−5)2−4×5×6
Simplify the expression
More Steps

Evaluate
(−5)2−4×5×6
Multiply the terms
More Steps

Multiply the terms
4×5×6
Multiply the terms
20×6
Multiply the numbers
120
(−5)2−120
Rewrite the expression
52−120
Evaluate the power
25−120
Subtract the numbers
−95
x=105±−95
Simplify the radical expression
More Steps

Evaluate
−95
Evaluate the power
95×−1
Evaluate the power
95×i
x=105±95×i
Separate the equation into 2 possible cases
x=105+95×ix=105−95×i
Simplify the expression
x=21+1095ix=105−95×i
Simplify the expression
x=21+1095ix=21−1095i
Solution
x1=21−1095i,x2=21+1095i
Alternative Form
x1≈0.5−0.974679i,x2≈0.5+0.974679i
Show Solution
