Question
Simplify the expression
1−24x2+48x
Evaluate
6−3(x−2)×4(2x×1)−5
Remove the parentheses
6−3(x−2)×4×2x×1−5
Multiply the terms
More Steps

Multiply the terms
−3(x−2)×4×2x×1
Rewrite the expression
−3(x−2)×4×2x
Multiply the terms
More Steps

Evaluate
3×4×2
Multiply the terms
12×2
Multiply the numbers
24
−24(x−2)x
Multiply the terms
−24x(x−2)
6−24x(x−2)−5
Expand the expression
More Steps

Calculate
−24x(x−2)
Apply the distributive property
−24x×x−(−24x×2)
Multiply the terms
−24x2−(−24x×2)
Multiply the numbers
−24x2−(−48x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24x2+48x
6−24x2+48x−5
Solution
1−24x2+48x
Show Solution

Find the roots
x1=1212−56,x2=1212+56
Alternative Form
x1≈−0.020621,x2≈2.020621
Evaluate
6−3(x−2)×4(2x×1)−5
To find the roots of the expression,set the expression equal to 0
6−3(x−2)×4(2x×1)−5=0
Multiply the terms
6−3(x−2)×4×2x−5=0
Multiply
More Steps

Multiply the terms
3(x−2)×4×2x
Multiply the terms
More Steps

Evaluate
3×4×2
Multiply the terms
12×2
Multiply the numbers
24
24(x−2)x
Multiply the terms
24x(x−2)
6−24x(x−2)−5=0
Expand the expression
More Steps

Simplify
6−24x(x−2)
Expand the expression
More Steps

Evaluate
−24x(x−2)
Apply the distributive property
−24x×x−(−24x×2)
Multiply the terms
−24x2−(−24x×2)
Multiply the numbers
−24x2−(−48x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24x2+48x
6−24x2+48x
6−24x2+48x−5=0
Subtract the numbers
1−24x2+48x=0
Rewrite in standard form
−24x2+48x+1=0
Multiply both sides
24x2−48x−1=0
Substitute a=24,b=−48 and c=−1 into the quadratic formula x=2a−b±b2−4ac
x=2×2448±(−48)2−4×24(−1)
Simplify the expression
x=4848±(−48)2−4×24(−1)
Simplify the expression
More Steps

Evaluate
(−48)2−4×24(−1)
Multiply
More Steps

Multiply the terms
4×24(−1)
Any expression multiplied by 1 remains the same
−4×24
Multiply the terms
−96
(−48)2−(−96)
Rewrite the expression
482−(−96)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
482+96
Evaluate the power
2304+96
Add the numbers
2400
x=4848±2400
Simplify the radical expression
More Steps

Evaluate
2400
Write the expression as a product where the root of one of the factors can be evaluated
400×6
Write the number in exponential form with the base of 20
202×6
The root of a product is equal to the product of the roots of each factor
202×6
Reduce the index of the radical and exponent with 2
206
x=4848±206
Separate the equation into 2 possible cases
x=4848+206x=4848−206
Simplify the expression
More Steps

Evaluate
x=4848+206
Divide the terms
More Steps

Evaluate
4848+206
Rewrite the expression
484(12+56)
Cancel out the common factor 4
1212+56
x=1212+56
x=1212+56x=4848−206
Simplify the expression
More Steps

Evaluate
x=4848−206
Divide the terms
More Steps

Evaluate
4848−206
Rewrite the expression
484(12−56)
Cancel out the common factor 4
1212−56
x=1212−56
x=1212+56x=1212−56
Solution
x1=1212−56,x2=1212+56
Alternative Form
x1≈−0.020621,x2≈2.020621
Show Solution
