Question
Simplify the expression
6−41l2
Evaluate
6−41l×l
Solution
6−41l2
Show Solution

Find the roots
l1=−41246,l2=41246
Alternative Form
l1≈−0.382546,l2≈0.382546
Evaluate
6−41l×l
To find the roots of the expression,set the expression equal to 0
6−41l×l=0
Multiply the terms
6−41l2=0
Move the constant to the right-hand side and change its sign
−41l2=0−6
Removing 0 doesn't change the value,so remove it from the expression
−41l2=−6
Change the signs on both sides of the equation
41l2=6
Divide both sides
4141l2=416
Divide the numbers
l2=416
Take the root of both sides of the equation and remember to use both positive and negative roots
l=±416
Simplify the expression
More Steps

Evaluate
416
To take a root of a fraction,take the root of the numerator and denominator separately
416
Multiply by the Conjugate
41×416×41
Multiply the numbers
More Steps

Evaluate
6×41
The product of roots with the same index is equal to the root of the product
6×41
Calculate the product
246
41×41246
When a square root of an expression is multiplied by itself,the result is that expression
41246
l=±41246
Separate the equation into 2 possible cases
l=41246l=−41246
Solution
l1=−41246,l2=41246
Alternative Form
l1≈−0.382546,l2≈0.382546
Show Solution
