Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=6−31,x2=6+31
Alternative Form
x1≈0.432236,x2≈11.567764
Evaluate
60=12x×12−3x2×4
Simplify
More Steps

Evaluate
12x×12−3x2×4
Multiply the terms
144x−3x2×4
Multiply the terms
144x−12x2
60=144x−12x2
Swap the sides
144x−12x2=60
Move the expression to the left side
144x−12x2−60=0
Rewrite in standard form
−12x2+144x−60=0
Multiply both sides
12x2−144x+60=0
Substitute a=12,b=−144 and c=60 into the quadratic formula x=2a−b±b2−4ac
x=2×12144±(−144)2−4×12×60
Simplify the expression
x=24144±(−144)2−4×12×60
Simplify the expression
More Steps

Evaluate
(−144)2−4×12×60
Multiply the terms
More Steps

Multiply the terms
4×12×60
Multiply the terms
48×60
Multiply the numbers
2880
(−144)2−2880
Rewrite the expression
1442−2880
Evaluate the power
20736−2880
Subtract the numbers
17856
x=24144±17856
Simplify the radical expression
More Steps

Evaluate
17856
Write the expression as a product where the root of one of the factors can be evaluated
576×31
Write the number in exponential form with the base of 24
242×31
The root of a product is equal to the product of the roots of each factor
242×31
Reduce the index of the radical and exponent with 2
2431
x=24144±2431
Separate the equation into 2 possible cases
x=24144+2431x=24144−2431
Simplify the expression
More Steps

Evaluate
x=24144+2431
Divide the terms
More Steps

Evaluate
24144+2431
Rewrite the expression
2424(6+31)
Reduce the fraction
6+31
x=6+31
x=6+31x=24144−2431
Simplify the expression
More Steps

Evaluate
x=24144−2431
Divide the terms
More Steps

Evaluate
24144−2431
Rewrite the expression
2424(6−31)
Reduce the fraction
6−31
x=6−31
x=6+31x=6−31
Solution
x1=6−31,x2=6+31
Alternative Form
x1≈0.432236,x2≈11.567764
Show Solution
